

Björn Matthias, ABB Corporate Research, 2015-09-28

The Role of Collision Experiments in Safety Standardization and in the Characterization of Collaborative Robots, Systems and Applications

Workshop IROS 2015 – Towards Standardized Experiments in Human-Robot Interactions



#### Collision Experiments for Safety and Characterization Overview

- What are we trying to achieve?
  - ➔ Objectives
- What do we have today?
   Overview of present criteria for comparison
- Who needs to do experiments?
   Players and responsibilities
- What do the experiments need to characterize?
   Physics of contact
- How should the experiments be done?
   Methods of measurement
- How can the results of the experiments be used?
   Quantities for Comparisons
- Summary and outlook



#### Collision Experiments for Safety and Characterization Objectives

- As stated clearly in workshop scope:
  - "... standardized assessment of robot products and applications in use in terms of safety, performance, user experience, and ergonomics."
- How easy or hard is this going to be?

|               |                               | Safety | Performance | User<br>Experience | Ergonomics |
|---------------|-------------------------------|--------|-------------|--------------------|------------|
| Principle     | Objectivity,<br>generalizable | 0 → +  | +           | —                  | 0          |
| Method        | Measurable, reproducible      | +      | +           | 0                  | +          |
| Dissemination | Documented,<br>available      | 0 → +  | +           | _                  | _          |



#### Collision Experiments for Safety and Characterization Overview of Present Criteria for Comparison

- Active standards
  - ISO 8373 "Manipulating industrial robots Vocabulary"
  - ISO 9283 "Manipulating industrial robots Performance criteria and related test methods"
  - ISO 9409 "Manipulating industrial robots Mechanical interfaces"
  - ISO 9787 "Robots and robotic devices Coordinate systems and motion nomenclatures"
  - ISO 9946 "Manipulating industrial robots Presentation of characteristics"
  - ISO 11593 "Manipulating industrial robots Automatic end-effector exchange systems Vocabulary and presentation of characteristics"
  - ISO 10218-1, -2 "Robots and robotic devices Safety requirements for industrial robots"
  - ISO 13482 "Robots and robotic devices Safety requirements for personal care robots"
  - ISO/TR 13309 "Manipulating industrial robots Informative guide on test equipment and metrology methods of operation for performance evaluation in accordance with ISO 9283
  - ISO 14539 "Manipulating industrial robots Object handling with grasp-type grippers Vocabulary and presentation of characteristics"
  - ISO/TS 15066 "Robots and robotic devices Safety requirements for industrial robots Collaborative operation"

(red = contains requirements needing experimental verification)



#### Collision Experiments for Safety and Characterization Overview of Present Criteria for Comparison

- Typical quantities in specifications and data sheets
  - By inspection testing not needed
    - Power source, electrical rating (ISO 8846)
    - Type (serial, parallel, Cartesian, ...), no. of joints, mounting orientation (ISO 9946)
    - Reach, dimensions of working space (ISO 9946)
    - Coordinate systems, base and flange (ISO 9946, ISO 9787)
    - Base mounting surface (ISO 9946), flange mounting surface (ISO 9946, ISO 9409)
    - Load (ISO 9946)
    - Environmental conditions, ingress protection (ISO 9946)
  - Testing needed for verification and comparison
    - Position accuracy, repeatability (ISO 9283)
    - Path accuracy, repeatability (ISO 9283)
    - Stopping behavior (ISO 10218-1)
    - Pick-and-place cycle 25 mm / 300 mm / 25 mm (adept)
    - Joint ranges, speeds, torques (often given optionally)
    - For power-and-force limited collaborative robots: quasi-static and transient contact situations (ISO/TS 15066)



#### Collision Experiments for Safety and Characterization Players and Responsibilities

| Aspect                                 | Robot Manufacturer                                                                                                                         | System Integrator                                                                                                                   | End-User                                                                         |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| EU Machinery<br>Directive or<br>equiv. | <ul> <li>Incomplete machinery</li> <li>Technical construction file</li> <li>Declaration of incorporation</li> <li>No CE marking</li> </ul> | <ul> <li>Completed machinery</li> <li>Technical construction file</li> <li>Declaration of conformity</li> <li>CE marking</li> </ul> | <ul> <li>Operate only CE<br/>marked<br/>equipment</li> </ul>                     |
| Risk<br>Assessment                     | For robot manipulator                                                                                                                      | <ul><li>For complete application</li><li>Intended use</li><li>Foreseeable misuse</li></ul>                                          | (with integrator)                                                                |
| ISO 10218-1                            | <ul> <li>Basic safety requirements<br/>for industrial robots</li> </ul>                                                                    | • N/A                                                                                                                               | • N/A                                                                            |
| ISO 10218-2                            | • N/A                                                                                                                                      | <ul> <li>Basic safety<br/>requirements for<br/>industrial robot systems</li> </ul>                                                  | • N/A                                                                            |
| ISO/TS 15066                           | Specific requirements for<br>collaborative robots                                                                                          | Specific requirements for<br>collaborative applications                                                                             | • N/A                                                                            |
| Information for<br>Use                 | <ul> <li>Safety configuration</li> <li>Exceptions to standards</li> <li>Exclusions (e.g. do not use this device for xxx)</li> </ul>        | <ul> <li>Guidance for safe usage</li> <li>Intended use of<br/>equipment</li> <li>Exceptions, exclusions</li> </ul>                  | <ul> <li>Follow<br/>manufacturer<br/>and integrator<br/>documentation</li> </ul> |



#### Collision Experiments for Safety and Characterization Physics of Contact

- Types of collaborative operation
- Human-robot contact
  - Classification
  - Basic hazard types
- Models of contact events
  - Short duration (transient)
    - Two-body (in)elastic collision
    - Constrained / unconstrained
  - Sustained (quasi-static)
    - Forward kinematic transformation of joint torques
    - Constrained



#### Types of Collaborative Operation According to ISO 10218, ISO/TS 15066

| ISO<br>10218-1,<br>clause | Type of collaborative operation                                                                                  | Main means of risk reduction                                                          |                                |
|---------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------|
| 5.10.2                    | Safety-rated monitored stop<br>(Example: manual loading-station)                                                 | No robot motion when<br>operator is in collaborative<br>work space                    |                                |
| 5.10.3                    | Hand guiding<br>(Example: operation as assist device)                                                            | Robot motion only through direct input of operator                                    |                                |
| 5.10.4                    | Speed and separation monitoring<br>(Example: replenishing parts<br>containers)                                   | Robot motion only when<br>separation distance above<br>minimum separation<br>distance | $v < v_{max}$<br>$d > d_{min}$ |
| 5.10.5                    | Power and force limiting by inherent design or control (Example: <i>ABB YuMi</i> ® collaborative assembly robot) | In contact events, robot can<br>only impart limited static and<br>dynamics forces     | F < F <sub>max</sub>           |



#### Speed and Separation Monitoring **Protective Separation Distance**



Slide 9

#### Speed and Separation Monitoring Protective Separation Distance

| $S_{protective}(t_0) = S_{human} + S_{reaction} + S_{stopping} + C$ | $+ Z_S + Z_R$                                          |  |
|---------------------------------------------------------------------|--------------------------------------------------------|--|
| $S_{human} = \int_{t_0}^{t_0 + T_r + T_s} v_H(t) dt$                | Here, $t_0 =$ "now"<br>and $t =$ integration variable. |  |
| $S = \int_{0}^{t_0+T_r} w(t) dt$                                    |                                                        |  |
| $S_{reaction} - \int_{t_0} v_R(t) dt$                               | Condition for sufficient protection at                 |  |
| $S_{stopping} = \int_{t_0+T_r}^{t_0+T_r+T_s} v_R(t) dt$             | $t_0$ is $S_{measured}(t_0) \ge S_{protective}(t_0)$ . |  |

Simple model assumptions (constant values) for  $v_H(t)$  and for  $v_R(t)$  in the reaction-phase of the robot motion can be made to give:

 $S_{human} = v_H(t_0) \cdot (T_r + T_s)$ 

 $S_{reaction} = v_R(t_0) \cdot T_r$ 

Values for the stopping distance  $S_{stopping}$  should be obtained, as stated, from the data provided according to ISO 10218-1, Annex B.

© ABB 2015-09-27 Slide 10





© ABB

Slide 11

#### Human-Robot Contact Classification





#### Human-Robot Contact Basic Hazard Types

|                                       | Transient Contact                                                                                                  | Quasi-Static Contact                                                                                  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Description                           | <ul> <li>Contact event is "short" (&lt; 50 ms)</li> <li>Human body part can usually recoil</li> </ul>              | <ul> <li>Contact duration is "extended"</li> <li>Human body part cannot recoil, is trapped</li> </ul> |
| Limit Criteria                        | <ul><li>Peak forces, pressures, stresses</li><li>Energy transfer, power density</li></ul>                          | <ul> <li>Peak forces, pressures, stresses</li> </ul>                                                  |
| Accessible<br>in Design or<br>Control | <ul> <li>Effective mass (robot pose, payload)</li> <li>Speed (relative)</li> <li>Contact area, duration</li> </ul> | <ul> <li>Force (joint torques, pose)</li> <li>Contact area, duration</li> </ul>                       |







#### Models of Contact Events Sustained Duration – Quasi-Static



- Compute forward kinematic transformation
- Apply to calculate contact forces and moments from joints torques



#### Models of Contact Events Short Duration – Transient



- Inelastic two-body contact
- Conservation of linear momentum
- Kinetic energy partly dissipated





### Transient limit criteria related to robot design + control



• Force F [N]

• Pressure 
$$p \left[\frac{N}{m^2} = \frac{J}{m^3}\right]$$

- Momentum transfer  $q \left[\frac{kg \cdot m}{s}\right]$
- Energy transfer U [J]

• Power 
$$P[W = \frac{J}{s}]$$

- Energy flux density  $K\left[\frac{J}{m^2}\right]$
- Power flux density  $S\left[\frac{W}{m^2}\right]$
- Contact area A [m<sup>2</sup>]



# General approach – effective inelastic 2-body collision

- $\mu$  = reduced mass of 2-body system of robot and human body section
- $v_{rel}$  = relative speed between robot and human body section
- $C_R$  = coefficient of restitution
- k = effective spring constant of body area (here assumed constant)
- $x_1 = maximum$  compression of tissue in area of contact
- $A_{avg}$  = average contact area during contact event
- $F_{lim}$ ,  $p_{lim}$  = force, pressure limit values for specific body region

Kinetic energy transfer:Worst-case assumption:Energy stored in "spring": $\Delta W = \frac{1}{2} \mu v_{rel}^2 (1 - C_R^2)$  $C_R = 0 \rightarrow \Delta W = \frac{1}{2} \mu v_{rel}^2$  $\Delta W = \frac{1}{2} k x_1^2 = \frac{F^2}{2k}$ 

Fully deposit kinetic energy into tissue as modeled by spring:

$$\frac{F^2}{2k} = \frac{1}{2} \mu v_{rel}^2 \quad \Rightarrow \quad v_{rel} = \frac{F}{\sqrt{\mu k}} = \frac{pA}{\sqrt{\mu k}} \quad \stackrel{F < F_{lim}}{\Rightarrow} \qquad v_{rel} < \frac{F_{lim}}{\sqrt{\mu k}} \approx \frac{p_{lim} A_{avg}}{\sqrt{\mu k}}$$
$$\mu = \left[\frac{1}{m_R} + \frac{1}{m_H}\right]^{-1}$$

#### Effective mass of robot (1) Proper formulation from complete equation of motion of robot

Equation of motion for stiff robot

 $M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = \tau + \tau_c$ 

- $M \in \mathbb{R}^{n \times n}$ : mass/inertia matrix
- $\boldsymbol{C} \in \mathbb{R}^{n \times n}$ : centripetal and Coriolis matrix
- $\boldsymbol{g} \in \mathbb{R}^n$ : gravity vector
- $oldsymbol{ au} \in \mathbb{R}^n$  : joint motor torque vector

 $\boldsymbol{\tau_c} \in \mathbb{R}^n$  : external contact torque vector

Effective mass in direction of unit vector 
$$\boldsymbol{u}$$
:  
 $m_u = [\boldsymbol{u}^T \boldsymbol{\Lambda}_t^{-1}(\boldsymbol{q}) \boldsymbol{u}]^{-1}$   
where  $\boldsymbol{\Lambda}(\boldsymbol{q}) = (\boldsymbol{J}(\boldsymbol{q}) (\boldsymbol{M}(\boldsymbol{q}))^{-1} \boldsymbol{J}^T(\boldsymbol{q}))^{-1}$ 

Kinetic energy  $T = \frac{1}{2} \dot{\boldsymbol{q}}^T \boldsymbol{M}(\boldsymbol{q}) \dot{\boldsymbol{q}}$ 

Jacobian matrix J(q) such that  $\dot{x} = J(q) \dot{q}$ 

Translational and rotational parts  $J(q) = \begin{bmatrix} J_t(q) \\ J_r(q) \end{bmatrix}$ 

#### Effective mass of robot (2) Approximate formulation: Lumped parameter model



Example for stiff 3 DOF robot

- Effective moving mass at contact location (reflected inertia)  $m_R$
- Speed of contact location  $\vec{v}_R$
- Material properties of contact location
  - E.g. padding
- Compliance of kinematic chain
  - Can reduce effective mass

$$\vec{p}_R = \sum_i m_i \vec{v}_i \qquad m_R = \frac{\vec{p}_R \cdot \vec{v}_R}{v_R^2}$$



#### 6 DOF articulated robot – Pose F (1) Straight from J2 to Flange, Rotation in J1

- For rotation about J1 and rigid joints J2, J3, J4, J5 and J6
  - Motion of J4, J6 not directly relevant, except if there is a heavy and asymmetric load on the flange
  - Speeds of COGs of links and load



• 
$$v_{23} = \omega \frac{L_{23}}{2}$$

• 
$$v_{34} = \omega \left( L_{23} + \frac{L_{34}}{2} \right)$$

•  $v_{45} = \omega \left( L_{23} + L_{34} + \frac{L_{45}}{2} \right)$ 

• 
$$v_{56} = \omega \left( L_{23} + L_{34} + L_{45} + \frac{L_{56}}{2} \right)$$

• 
$$v_{6F} = \omega \left( L_{23} + L_{34} + L_{45} + L_{56} + \frac{L_{6F}}{2} \right)$$

• 
$$v_L = \omega \left( L_{23} + L_{34} + L_{45} + L_{56} + L_{6F} \right)$$

Speeds at J3, F

$$M = M_{2F} = m_{23} + m_{34} + m_{45} + m_{56} + m_{6F} \quad \cdot v_3 = \omega L_{23}$$
$$L_{2F} = L_{23} + L_{34} + L_{45} + L_{56} + L_{6F} \quad \cdot v_F = \omega (L_{23} + L_{34} + L_{45} + L_{56} + L_{6F})$$

#### 6 DOF articulated robot – Pose F (2) Straight from J2 to Flange, Rotation in J1

- For rotation about J1 and rigid joints J2, J3, J4, J5 and J6
  - Motion of J4, J6 not directly relevant, except if there is a heavy and asymmetric load on the flange
  - Momentum of COGs of links and load

• 
$$p_{23} = m_{23}v_{23} = \omega m_{23} \frac{L_{23}}{2}$$

• 
$$p_{34} = m_{34}v_{34} = \omega m_{34} \left( L_{23} + \frac{L_{34}}{2} \right)$$

• 
$$p_{45} = m_{45}v_{45} = \omega m_{45} \left( L_{23} + L_{34} + \frac{L_{45}}{2} \right)$$

• 
$$p_{56} = m_{56}v_{56} = \omega m_{56} \left( L_{23} + L_{34} + L_{45} + \frac{L_{56}}{2} \right)$$

• 
$$p_{6F} = m_{6F}v_{6F} = \omega m_{6F} \left( L_{23} + L_{34} + L_{45} + L_{56} + \frac{L_{6F}}{2} \right)$$

• 
$$p_L = m_L v_F = \omega m_L (L_{23} + L_{34} + L_{45} + L_{56} + L_{6F})$$

- Effective mass for contact at elbow (J3)

• 
$$m_{eff}(J3) = \frac{p_{23} + p_{34} + p_{45} + p_{56} + p_{6F} + p_L}{v_3} = \frac{L_{2F}}{L_{23}} \left[ \frac{M_{2F}}{2} + m_L \right]$$

Effective mass for contact at flange (F)

$$M = M_{2F} = m_{23} + m_{34} + m_{45} + m_{56} + m_{6F} \quad \cdot \quad m_{eff}(F) = \frac{p_{23} + p_{34} + p_{45} + p_{56} + p_{6F} + p_L}{v_F} = \frac{M_{2F}}{2} + m_L$$

$$L_{2F} = L_{23} + L_{34} + L_{45} + L_{56} + L_{6F}$$





#### ISO/TS 15066 – Present Status Body Model



Figure A.1 — Body Model

#### Table A.1 — Body Model Descriptions

|                             |                    |                         | Front/ |
|-----------------------------|--------------------|-------------------------|--------|
| Body Region                 | Specific Body Area |                         | Rear   |
| Skull and forehead          | 1                  | Middle of forehead      | Front  |
|                             | 2                  | Temple                  | Front  |
| Face                        | 3                  | Masticatory muscle      | Front  |
| Neck                        | 4                  | Neck muscle             | Rear   |
|                             | 5                  | Seventh neck vertebra   | Rear   |
| Back and shoulders          | 6                  | Shoulder joint          | Front  |
|                             | 7                  | Fifth lumbar vertebra   | Rear   |
| Chest                       | 8                  | Sternum                 | Front  |
|                             | 9                  | Pectoral muscle         | Front  |
| Abdomen                     | 10                 | Abdominal muscle        | Front  |
| Pelvis                      | 11                 | Pelvic bone             | Front  |
| Upper arms and elbow        | 12                 | Deltoid muscle          | Rear   |
| joints                      |                    |                         |        |
|                             | 13                 | Humerus                 | Rear   |
|                             | 16                 | Arm nerve               | Front  |
| Lower arms and wrist joints | 14                 | Radial bone             | Rear   |
|                             | 15                 | Forearm muscle          | Rear   |
| Hands and fingers           | 17                 | Forefinger pad D        | Front  |
|                             | 18                 | Forefinger pad ND       | Front  |
|                             | 19                 | Forefinger end joint D  | Rear   |
|                             | 20                 | Forefinger end joint ND | Rear   |
|                             | 21                 | Thenar eminence         | Front  |
|                             | 22                 | Palm D                  | Front  |
|                             | 23                 | Palm ND                 | Front  |
|                             | 24                 | Back of the hand D      | Rear   |
|                             | 25                 | Back of the hand ND     | Rear   |
| Thighs and knees            | 26                 | Thigh muscle            | Front  |
|                             | 27                 | Kneecap                 | Front  |
| Lower legs                  | 28                 | Middle of shin          | Front  |
|                             | 29                 | Calf muscle             | Rear   |



#### Collision Experiments for Safety and Characterization Methods of Measurement



- Visco-elastic properties of body area in spring-damper element
- Mass m chosen to represent effective mass of body area
- Measure over time
  - Contact area, pressure distribution
  - Forces, torques, displacement



#### Experimental Characterization of Collaborative Robot Collisions Experimental Setups















#### Experimental Characterization of Collaborative Robot Collisions Experimental Setup



rosetta

© ABB 2015-09-27 Slide 25



#### Experimental Characterization of Collaborative Robot Collisions Experimental Setups







#### Collision Experiments for Safety and Characterization Quantities for Comparisons

- Quasi-static contact events
  - Characterized by forces and pressures, contact area
  - Controlled by joint torque limitation (safety-related control function or electro-mechanical design)
- Transient contact events
  - Characterized by energy transfer, contact area, duration (power flux density)
  - Controlled by limiting robot speed



#### Collision Experiments for Safety and Characterization Summary and Outlook

- Collision experiments are necessary to establish suitability of robots for collaborative operation according to powerand-force-limiting
- Collision data can be used to verify and validate simulations of contact events for a given robot type
- Experimental set ups and practical challenges
- Comparison of contact event characteristics is possible for given robot motion or pose
- Future or deployment of collaborative applications
  - → use validated robot with experimental collision data and simulation model
  - → determine limit parameters (torques, forces, speeds) of robot motion from simulation of target application



## Power and productivity for a better world<sup>™</sup>

