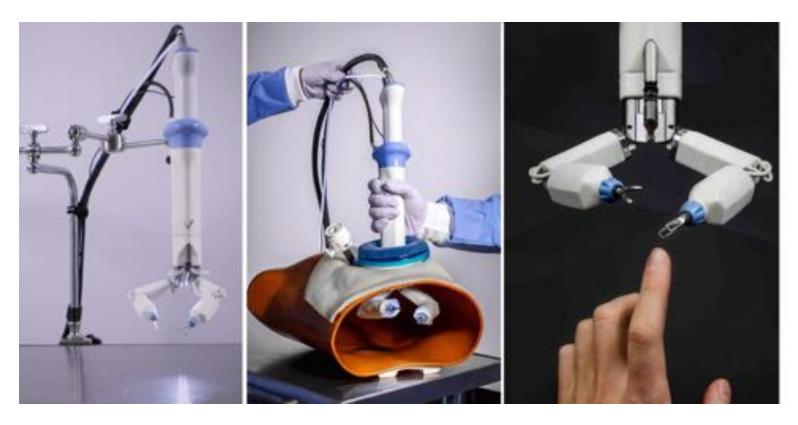

Medical Robots for Surgery

Tamás Haidegger, PhD

European Robotics Forum 2016 Ljubljana, Slovenia

Rising surgical robots


• Google + Johnson & Johnson

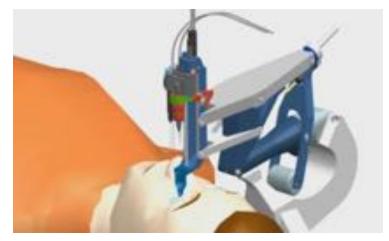
Virtual Incision

University of Nebraska spin-off

D. Oleynikov et al. Since 2008 Received over \$80 m investment

ALF-X Telelap

- Advanced Laparoscopy through Force-RefleCT(X)ion
- Sofar S.a.P. (Milan, IT)
- NES Academy, EU grant support
- 2006–
- Acquired by **TransEnterix** for \$100m



EurEyeCase – eye surgery robot

- Tech. University of Eindhoven (NL) and
 - K. U. Leuven
- Tremor filtering, 1:10 motion scaling
- Haptic feedback
- RCM mechanism
- Tools of a diameter of 0.5 millimeter (forceps, scissors and drains)
- Fast instrument changing

Credit: Tech. University of Eindhwen

neuroArm/Symbis

IMRIS (2010–)

Developed by Univ. Calgary and MD Robotics

- With experience gained at the Space Station SPDM
- 1 systems, MR compatibly up to 3 T
- First brain tumor patient: 2008
- Few dozen human surgeries
- Looking for FDA clearance in 2012
 - Treating up to 120 patients

Credit: Univ. of Calgary, www.neuroarm.org

Robots are everywhere

[Haidegger et al., RAS Special Issue, 2013]

	Pro
	> Wor
Industrial Robots	fixed
•	> Task
Caged environment	> Impl
> Apriori task definition	> Mult
Automatic execution of	proc
explicit programs	> Auto
	 Apriori task definition Automatic execution of

Structured, Simple tasks,

Limited Human interaction

Field Robots ofessional Robots)

- ld Model based on d environment data
- specific commands
- licit programs
- tisensory information
- essing
 - omatic path planning

Personal Robots

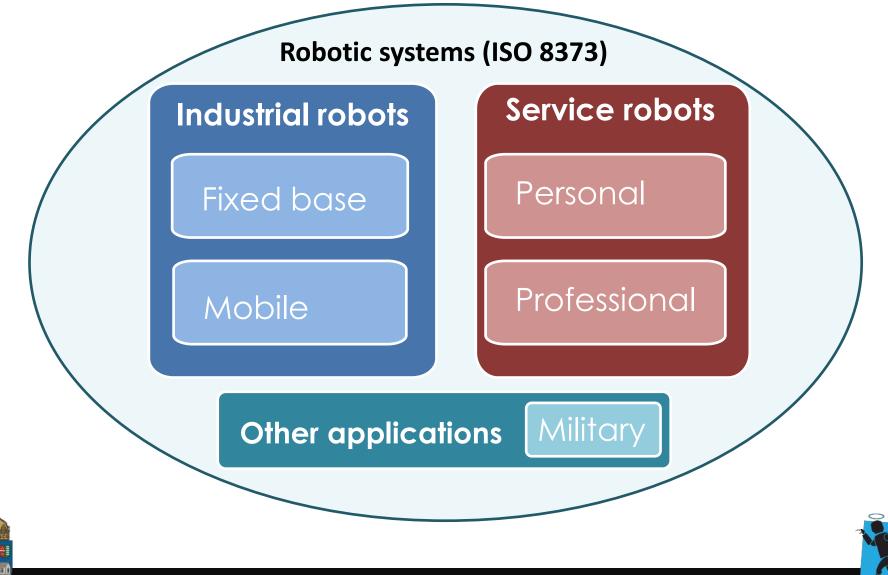
- Autonomous agents
- Comprehension of environment through models
- Communicate with environment
- Automatic generation of programs based on tasks planned
- Understand human actions
- Follow human social norms
- Mimic human abilities and shape

Unstructured, Complex tasks, Natural Human interaction

Degree of Complexity

(Environment, Task and Human Interaction)

Haidegger T. Medical Robots for Surgery @ERF 2016

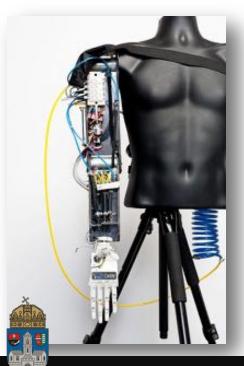


High

ymon

8

Domains of robotics


Medical robots

- Visiting robots (FDA approval or RP-2/iRobot)
- Patient/goods carriers (widespread application)
- Medical delivery (GE's new radiotherapy deliv.)

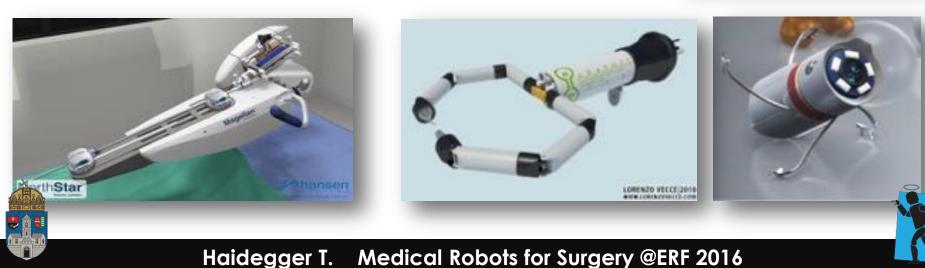
Rehabilitation robots

- Rehabilitation devices
- Assistive robots
- Exoskeletons
- Prosthetics
- Physiology therapy

Haidegger T. Medical Robots for Surgery @ERF 2016

Credit: REHAROB cons.



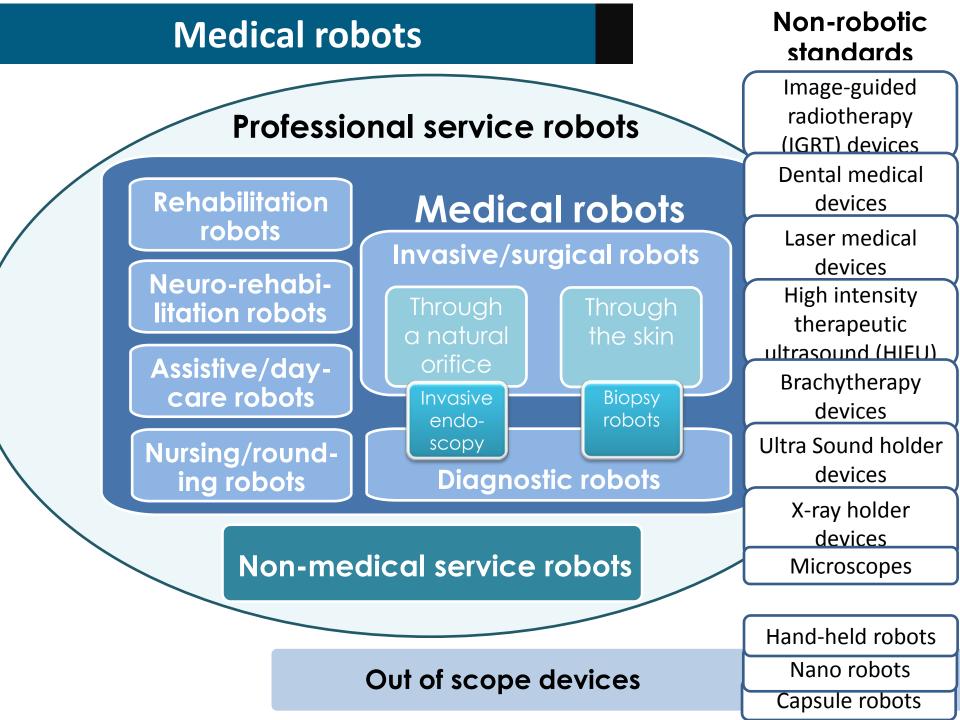


\$20 B estimated market for IGS and medical imaging

\$20 B estimated market for MIS in 2015

\$15 B estimated for **robotic surgery**





12

Surgical robot sales

- NeuroMate: ~30 sold (16 by ISS)
- Zeus: 50 (2002, discontinued 2003)
- ROBODOC: ~50 (37 before 2000)
- CASPAR: ~93 (discontinued in 2003)
- MAKO RIO: ~250 systems sold (2015)
- SpineAssist: 3 in the USA (07.2010)
- Renaissance: 70+ (03.2014.)
- CyberKnife: 240 (2013)
- Hansen Sensei: 130 (Q3 2012)
- ATRAS: 100+ (2014Q4)
- EndoAssist: ~100 (-2005)
- PathFinder: ~10
- Niobe: ~100?
- ROSA 55+ (2015)
- Zeego: 500+ (2014)
- da Vinci: 3500+ robots (Q1 2016)

"Robots for medical intended use"

EC Machinery Directive:

 Non-medical personal care robots -> machines for performing "aiding actions, and actions contributing directly towards improvement in the quality of life of humans, except medical application"

EC Medical Device Directive:

 Medical robots are classified and will be regulated as *medical electrical* equipment and systems which are to be used to diagnose, treat or rehabilitate patients from medical conditions

Regulatory approaches

European Economic Community (EU)

- CE mark (Conformité Européenne) managed by independent Notified Bodies
- ISO 9000 Quality Standards family (ISO 9001:2000) possibility of self-certification
- New: 2007/47/EC extension to 1993/42/EEC Medical Device Directive
 - more clinical data required

Food and Drug Administration (USA)

- Pre-Market Approval (PMA): long, thorough, expensive
- Premarket notification, 510(k): doctrine of "substantially equivalency"
- FDA Quality System Regulations (QSR)
- All surgical robots went down 510(k)

Haidegger T.	Medical Robots for Surgery @ERF 2016

IEC 60601-1 updates

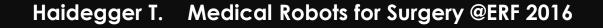
- supportive medical data as evidence for the safety and performance
- risk assessment and analysis even for OEMs
- Improved field monitoring (e.g., FDA MAUDE)

510(k) is under fire

- 510(k) Working Group
- Task Force on the Utilization of Science in Regulatory Decision Making

Joint ISO–IEC workgroup on Medical Robot standards

- ISO/TC 299 (Robots and Robotic Devices)
- IEC/SC 62A (Common Aspects of Electrical Eq. used in Medical Practice)
- JWG 9: Joint Work Group on Standard for Medical Robot Safety
- JWG 35: Medical robots for surgery
- JWG 36: Medical robots for rehabilitation, compensation or alleviation of disease, injury or disability


IEC 80601-2-77

MEDICAL ELECTRICAL EQUIPMENT – Part 2-77:

Particular requirements for basic safety and essential performance of MEDICAL ROBOT FOR SURGERY

Basic issues:

- Definitions (aligning with major standards and organizations)
- Criteria for inclusion/exclusion
 - 120+ advanced surgical robot projects identified
- Matching with other robotics standards
- Next meeting:
 - 13-16 May 2016, Gävle, Sweden

Inclusion issues

Thank you for your attention!

Follow the progress on: www.surgrob.blogspot.com

Andrea Bertolini, Scuola Superiore Sant'Anna

- Jan Veneman, Tecnalia
- Tamás Haidegger, Óbuda University

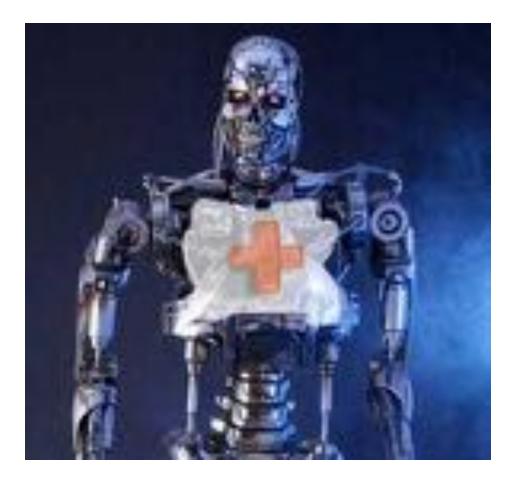
Would you accept a tele-surgery tool delivered to your home?

Panel questions

Would you accept an automated surgery?

Panel questions

Would you accept robotic nurses handling you?



Panel questions

Are you afraid of robot apocalypse?

