Performance Level Profiles for Code Reuse and Plug’n Play Autonomy

Maor Ashkenazi! and Ronen I. Brafman!

Abstract— Autonomous robots, such as service robots, must
combine diverse capabilities in diverse ways to perform dif-
ferent tasks. Writing functional modules that supply these
capabilities (e.g., navigation, manipulation, object recognition,
and much more) requires much expertise and time. The ability
to provide and use software packages and to reuse code from
different projects is essential for making it possible to build new
platforms quickly and reliably. However, the use and integration
of software, whether one’s own or imported, requires much
manual work, including reading documentation, and later on,
writing scripts that combine functional modules in useful ways.
Recently, we introduced Performance Level Profiles (PLPs), a
formal, yet intuitive XML-based language for specifying the
behavior of functional modules [1]. Unlike existing, text-based
specification formats, PLPs are machine readable and more
precise, and support software modularity in a number of ways.
First, they provide a form of contract — an important software
engineering notion crucial for code reuse — for robotics. More
importantly, they take us closer to modular construction and
reuse of software for autonomous systems. In [1] we describe
the automated generation of monitoring code given PLPs. Here
we explain how we support automated reuse and integration of
multiple functional modules via Al task-planning technology:
Given the PLP specification of a given functional module, we
automatically generate wrappers that enable a generic task
planner to interact with these modules without modifying their
code. The planner can schedule module execution, in essence,
providing ”’scripts” on demand.

[. INTRODUCTION

Modular design and the ability to (re)use third-party code
are essential for building large complex robotic systems.
This was quite evident in a recent project for building an
autonomous compact track loader (CTL) for discovery and
evacuation of land-mines. The project involved a large in-
dustrial partner (Israel Aerospace Industries), a professional
service provider, and academic partners, each providing soft-
ware packages that tackle different aspects of the problem.
For the industrial partner, replacing its own code base and
methodology was not an option, and it complained about
the difficulty of marketing products without the ability to
provide clear performance guarantees for the CTL’s func-
tional modules. With different modules supplied by different
partners, documented using the widely used text-based SSS
(systems/subsystem specification), it was difficult to foresee
how each module would behave. And often, different parties
made different assumptions and had different expectations
from the software packages.

Beyond these basic integration issues, other problems
arose. Various performance problems encountered at run-
time were identified at a late stage, although with appro-

1 Department of Computer Science, Ben-Gurion University, Beer-Sheva,
Israel {maorash,brafman}@cs.bgu.ac.il

priate monitoring earlier warnings could have been issued.
The basic capabilities of navigation, localization, etc. were
combined using a man-written script, and each time a mine
is detected, an operator must supply an explicit sequence of
operations to perform. Moreover, although its basic capabil-
ities can be combined in diverse ways (e.g., clean an area of
waste) doing so with its current architecture would require
writing a new script.

To address this issue, we suggest a methodology that is
based on two components: a formal, yet intuitive XML-based
language for describing the behavior of functional modules,
together with tools that exploit the machine-readability of
this description to generate code automatically. Although it
is difficult to provide a precise specification of the behaviour
of a functional module given an open-ended world, it appears
possible to provide a “good-enough” partial description of
the module’s role, the conditions under which it is expected
to succeed, its success probability, and its expected running
time (when relevant). To this end, we define performance-
level profiles or PLPs [1]. Technically, PLPs are XML files,
and hence machine readable and parsable. They have a
formal syntax, specified by an XML Schema Description
file, and are pretty intuitive. One can view them as a more
precise and constrained version of free-text specification and
documentation formats, adapted for robotic applications.

PLPs describe a number of key aspects of the performance
of functional modules. They combine ideas from planning
languages [2], [3] with diverse goal notions, such as achieve-
ment and maintenance goals [4], and new notions such as
progress measures and a repeat construct aimed at making
explicit the frequency by which input parameters are read and
output parameters are published. They can also be viewed
as extending the expressivity of contracts within the Design
by Contract approach [5] to address the needs of robotics
applications.

In this paper, we describe our effort to support plug-n-
play planning, facilitating per-task automated integration of
existing and new modules, making code reuse simpler — in
fact, automated — and making modular design easier. Given
a module’s PLP, our system does two things: First, it auto-
matically generates wrappers for each module — constructing
a middle layer between the users modules and ROSPlan — a
ROS-based task-planning tool [6]. This middleware provides
an abstraction layer that allows for seamless integration
of the modules with ROSPlan, without requiring the user
to understand ROSPlan or write code for it. Second, we
generate the required input for ROSPlan’s planner. This input
informs the planner about each module’s needs and abilities,
and it is used to generate the task plans. Here, some effort

is required, as the current underlying planner is a classical
planner, whereas robots operate under uncertainty and with
partial information of the world. This is achieved using
domain compilation techniques.

II. PLPs

The primary objective of a PLP is to clarify the role
and expected behavior of a module. As a simple example,
imagine a module designed to grasp an object. The expected
outcome is that the object is held by the arm. However, in
most realistic settings, this effect is not guaranteed. There
is some probability of failure, and failure can come with
some side effects, such as the object falling, or being broken.
And while the running time is most likely not deterministic,
we can try to describe properties of its distribution. We
can also describe the action’s rate of progress. For instance,
the grasping module is usually not static until the object is
captured, and so we expect its position to change at some
minimal rate. Moreover, the probability of success and failure
may depend on various properties, such as the shape and
size of the object. Furthermore, in certain settings it may be
unrealistic to specify the success probability, as too many
external things could impact it. For example, if another arm
is attempting to catch the object at the same time, it may be
difficult to predict which one will succeed.

PLPs can be thought of as a rich version of action
description languages. They have two abstract components.
The first circumscribes the conditions under which the profile
is provided — conditions that must hold for it to be valid.
And the second specifies the effect of the action. The first
part contains a list of input/output module parameters and
the frequency in which they are read or written, a list of
required resources with constraints on their rate of change,
preconditions, and concurrency conditions (conditions on
the world during module execution time, including which
modules can or cannot execute concurrently with the current
module). The second part specifies the meaning of successful
execution, describes the possible failure modes and their
probability, the distribution over running times, and the
expected rate of progress. More generally, it can specify
a statistical profile of various aspects of normal module
behavior at run-time.

PLPs are described in XML-based format. Each XML
document must conform to the schema defined for the
corresponding PLP type: achieve, maintain, observe, and
detect. These schema are described using XML Schema
Definition (XSD) files. XML and XSD were chosen for
their simplicity and wide-spread use and support. Any tool
for editing XML and verifying its structure based on an
XSD file can be used as a PLP editor. The precise syntax
of the four schema is laborious, and can be found in
https://github.com/PLPbgu/PLP-repo together with an exam-
ple of a PLP of each type.

Each PLP type corresponds to different types of functional
modules. Achieve modules attempt to reach a state of the
world in which some desired property holds. For example,
fuel tank is full, robot is standing, plane has landed, etc.

Achieve also covers cases where the goal is to generate
some virtual object, such as a map or a path. Beyond the
common elements, their PLP contains the achievement goal —
a Boolean condition defined over suitable parameters, failure
modes — which are various ways the module could fail
to achieve the goal, the probabilities associated with each
failure mode, the success probability, and the running time
distribution given success and given failure.

Maintain modules attempt to maintain the value of a
variable or the truth value of some more complex condition.
For example, maintain heading, maintain speed, maintain
perimeter clean, etc. The condition need not be initially true,
and so the module may need to initially attain the condition,
very much like a closed-loop controller that always attempts
to decrease some distance to the desired goal condition.
Beyond the common elements, their PLP contains: the con-
dition to be maintained, whether it is initially true or not,
termination conditions, one for successful termination and
one for failure, failure modes, the probability of successful
termination and different failure modes, and the runtime
distribution given success and failure. A success termination
condition is not necessary, and the run-time distribution will
often be memoryless (i.e., exponential).

Observe modules attempt to identify the value of some
variable(s) or a Boolean condition in the current world state.
For example: observe distance to wall, observe whether robot
is standing, observe whether object is held. Beyond the
common elements, their PLP contains: the observation goal
— a Boolean condition to be verified or a parameter whose
value is to be observed. We also describe the probability of
failure to observe, the probability the observation is correct
(if Boolean) or some form of error specification, such as
confidence interval and confidence level, and the running-
time distribution given success and given failure.

Detect modules attempt to identify some condition that is
either not true now, or that is not immediately observable. For
example, detect intruder, detect temperature change, detect
motion, detect obstacle, etc. Beyond the common elements,
their PLP contains: the detection goal — the condition being
detected, and the probability the condition will be detected
given that it holds (frue positive) and given that it does not
hold (false positive).

All four module types also specify side-effects, that is,
possible results of executing this module that are not a
measure of its success or failure. For example, if the module
consumes some resource, a natural side effect is that the
level of this resource is reduced. Side effects are described
by a conditional assignment to a parameter, which could
depend on a local variable (such as running time, or distance
traveled). Intuitively, side-effects are changes caused by the
module that could potentially impact other modules.

An important performance aspect described by PLPs is
Expected Progress Rate. Some modules perform continuous
work to achieve or maintain their goals. For example, when
navigating a robot, its position will change at some rate as
long as the robot is not at its destination. Another example,
when grasping an object, the arm will move closer to the

object. In this field, one specifies the minimal rate of change
per time unit, as well as the time unit itself (e.g., A(x) > 1
meter every 1 minute).

Many robotic modules operate by repeatedly updating or
modifying some data-structure or signal based on informa-
tion that is constantly being updated. To capture this type of
behavior, there is also a repeat wrapper for the achieve and
observe modules. For example, a path-planning module may
update the path as it obtains updated maps. It can be viewed
as performing an achieve task repeatedly.

For more information about PLPs and their use in perfor-
mance monitoring, see [1] and the links above.

ITI. ROSPLAN

ROSPlan [6] is a framework that provides a method for
task planning in ROS. It combines both planning and plan
dispatch. ROSPlan uses an underlying planner in order to
generate plans. The current planner is POPF [7], which uses
PDDL 2.1 [2]. The framework supports changing a planner
easily. ROSPlan is composed of three main parts:

e Planning System - handles planning (using the under-
lying planner), dispatching actions for execution and
replanning.

o Knowledge Management System (KMS) - holds the
PDDL data and data about the state of the world and
provides services to manage them.

o Components - the action nodes that will be dispatched
by the Planning System.

The Components need to subscribe to a shared ROSPlan
topic, used for action dispatch messages, and listen to the
messages sent from the Planning System. When a message
is received, the Components check whether or not they are
responsible for the actions being dispatched. If so, they are
responsible for updating the Planning System on success or
failure of the action. In addition, the Components need to
update the KMS on the current world state. According to the
above, in order to integrate an already implemented robotic
module into ROSPlan, we have two options:

« Modify the module, treating it as a component, adding
to it code that interacts with the Planning System and
the KMS.

o Leave the module unchanged, and implement a new
component that interacts with the Planning System, the
KMS and the module, thus creating an abstraction layer
between them.

We take the second approach, and exploit the module’s PLP
description to automatically generate the new component.

IV. USING PLPS FOR PLANNING

Our basic premise is that the code writer or code user
have specified a PLP for the relevant modules. Given this
information, we generate the middleware required to allow
existing code to communicate with a planner and database
— provided by ROSPlan — and the input required by the
planner. The compilation method used to generate planner
input is somewhat technical, and requires some familiarity

with task planning. Thus, due to space constraints, we refer
the interested reader to [8], where it is described in detail.

ROSPlan’s Components (action nodes) must interact with
the planner and KMS, which, as noted earlier, requires the
user’s understanding of ROSPlan and its interfaces and of
PDDL. This goes against the ideal of plug-n-play capability.
Instead, we exploit the information in the PLP to auto-
matically generate module dispatchers (PLP dispatchers, for
short) that dispatch plan steps to the appropriate underlying
modules. Each PLP dispatcher is a single ROS node that
provides a layer of abstraction (middleware) between the
Planning System and the KMS, and the relevant PLP’s
underlying module. Each PLP dispatcher will be responsible
for the following:

1) Listening to the ROSPlan topic used for action ex-
ecution. Once a relevant message is received, the
dispatcher activates the PLP’s underlying module’s
trigger (in order to execute it).

2) Constantly monitoring the termination conditions of
the PLP’s underlying module. Once a termination
condition holds, the dispatcher updates the planning
system whether the action failed or succeeded.

3) Receiving the PLP module’s output parameters and,
if needed, saving them in the KMS. This is crucial
because we might need to pass them to another PLP
as part of a trigger.

4) Updating the KMS with the current state of the world
according to the results of the PLP modules execution
and the PDDL actions effect.

5) The current planner input might make certain assump-
tions, so if a plan fails because of a wrong assumption,
the dispatcher updates the assumptions in the KMS and
informs the planning system that the action failed, thus
triggering a replan.

An interesting extension we are currently implementing is
detecting wrong assumptions earlier. This can be achieved by
monitoring the results of observation actions to identify in-
consistencies between the assumptions and the observed real
world values. If an inconsistency between the assumptions
and real values is detected, the assumptions will be changed
and a plan validator will be used to ensure the plan is still
valid. If not, a replan will occur.

Code generation requires, in addition to the PLPs, a glue
file which maps PLP parameters to PDDL parameters. The
PDDL parameters are sent to the PLP dispatchers when
an action is dispatched by the Planning System. To trigger
a relevant PLP module, the PLP dispatcher needs to send
correct execution parameters to the module. The mapping
allows us to do this easily. In addition, the KMS is checked to
see if any relevant parameter values (for the module’s trigger)
were stored there from a previous module’s execution. For
example, an objects location was sent as output from an
observe module and is needed for a module that grabs the
object.

This middleware allows us to continue adding new code
(modules) to our system without changing the previous

modules or writing new code, offering users the desired plug-
n-play behavior.

V. USE CASE

We tested our ability to integrate a planner into an existing
project by utilising it within a project for developing an au-
tonomous service robot, at this stage, working in simulation
only. Our robot, Robotican’s Armadilo robot, is a mobile
platform with a six DOF arm. It was supplied with a number
of basic capabilities for object recognition and grasping.
Additional development work was done by students, often
on top of existing ROS packages. What makes this project
particularly suitable to demonstrate the effectiveness of our
tools and ideas is the fact that all of the basic abilities were
implemented by different developers that know nothing about
ROSPIlan. In fact, beyond existing ROS packages, the code
was written by undergraduates unfamiliar with planning and
ROSPlan, who simply implemented new ROS nodes.

In the version of the service robot we worked on, the
robot’s goal is to bring a cup of coffee from anywhere in its
world (as defined by its acquired maps) to a goal location.
The robot can perform simple tasks such as: observing a cup
of coffee, grabbing a cup of coffee, navigating, observing a
button, pressing a button and so on. We wanted to use these
basic abilities in a plug-and-play manner in task planning,
without changing or implementing new code.

The architecture is shown in Figure 1. First, a PLP was
written for each of the basic abilities (modules). Then, the
PLP2PDDL compiler was used to generate a PDDL domain
file. Next, the code generator generated the middleware PLP
dispatchers that are in charge of handling the communication
between ROSPlan and the modules built by the developers
— their code was incorporated as is. Finally, we supplied
ROSPlan with the generated PDDL domain file and the rel-
evant problem file and the Planning System started planning
and dispatching the plan. The PLP dispatchers received all
of the messages sent by the Planning System, activated the
relevant modules and monitored their execution. When a
module finished running, the PLP dispatcher informed the
Planning System on success or failure and updated the KMS
on the current world state. Thus, we demonstrated that given
a set of PLPs for some robotic modules, they can be used
in a plug-and-play manner in task planning and execution.
A screenshot from the project is shown in Figure 2. In
addition, a video demo of the project execution is available
at: https://github.com/PLPbgu/PLP-repo.

VI. SUMMARY

We described our progress towards plug-n-play integration
of task planning into robotics. Plug-n-play of hardware
devices in personal computing require the ability of the
operating system and device to communicate using a well
known protocol, and use it to obtain the needed information.
Similarly, for task planning in robotics, we propose the use of
Performance Level Profiles, a machine-readable description-
format for robotic modules. PLPs are motivated by standard
planning languages, but attempt to make the specification

PLP Dispatchers (middleware)

PLP Files

Fig. 1.

System architecture

SIROSPlan dispatcher Dg® -«

Plan Pause/Resume | | Cancel | System Status |Dispatching
action_id _dispateh_time _action_name

] 0.0 (move reom_2 door_zone_1 zone1)
10.0010004044 (observe:_door_button door_zone_1 doorl)
20.0020008087 (press_door_button door_zone_1 doorl)
30.0030002594 (move_through_door door1 door_zone_1 zone1 door_
40.0040016174 (move door_zone_2 room_4 zone2)
500050010681 (order_coke room_4)
60.0060005188 (observe coke_can room _4)

ouwsuwnm

Mission Goals

(coke_at room_2)

Remove Selected Goals Add Goal robot_at v v
Facts
(arm_free)
(robot_at room_2)
(robot_at_zone zone1)
(loc_in_zone door_zone_1 zone1)

Remove Selected Facts | | Add Fact | [robot_at v v

4 Object Instances
obj

Add Instance | Type: |obj |v | Name:

Fig. 2. Using the generated PDDL domain and the PLP dispatcher
middleware for ROSPlan to plan and execute a service robot

more intuitive and appropriate by resorting to the well known
notions of achievement and maintenance goals, adding also
analogous notions for the sensing-side of robot activity.
Given the PLPs of a module, our software is able to support
its integration as a basic capability available to a planner, as
well as the generation of a PDDL description of its capability,
which is used as input to the planner.

REFERENCES

[1] R. I. Brafman, M. Bar-Sinai, and M. Ashkenazi, “Performance level
profiles: A formal language for describing the expected performance
of functional modules,” in Proceedings of International Conference on
Intelligent Robots and Systems, 2016.

[2] M. Fox and D. Long, “Pddl2.1: An extension to pddl for expressing
temporal planning domains,” JAIR, vol. 20, pp. 61-124, 2003.

[3] S. Sanner, “Relational dynamic influence diagram language (rddl):
Language description,” 2010.

[4] F.Ingrand, R. Catilla, R. Alami, and F. Robert, “A high level supervision
and control language for autonomous mobile robots,” in IEEE ICRA,
43-49, Ed., 1996.

[S] B. Meyer, Object-Oriented Software Construction, 2nd ed.
Hall, 1997.

[6] M. Cashmore, M. Fox, D. Long, D. Magazzeni, B. Ridder, A. Carrera,
N. Palomeras, N. Hurtés, and M. Carreras, “Rosplan: Planning in
the robot operating system,” in Proc. 25th Inter. Conf. on Automated
Planning and Scheduling, ICAPS, 2015, pp. 333-341.

[7]1 A. J. Coles, A. I. Coles, M. Fox, and D. Long, “Forward-chaining
partial-order planning,” in Proceedings of the Twentieth International
Conference on Automated Planning and Scheduling (ICAPS-10), 2010.

[8] M. Ashkenazi, M. Bar-Sinai, and R. I. Brafman, “Planning and mon-
itoring with performance level profiles,” in ICAPS’16 Workshop on
Planning and Robotics (PlanRob), 2016.

Prentice

