

Abstract— Since component based development has been

introduced in robot software, not only individual components but

also combined components and their application tests are

required. As the volume of the tests is increased, more

automation of the testing framework is demanded to reduce time

and effort. A test has a test resource management step, a test

script generation step, a test resource changing detecting step,

and a test execution step. Additionally, these steps needs are run

in different environments, i.e. the user interface is through the

Web, test resources are in a server, and the execution location for

the test is in a robot. This paper introduces an automated test

framework which runs on distributed environments.

I. INTRODUCTION

Component based development has been introduced in the
robot software field more than two decades ago [1-4.] Single
components can combine to create a larger component or an
application. This combining is simply connecting an input
interface to an output interface of the two components in the
software component based system (SCBS). Only the interfaces
of the component are exposed to the outside from the system.
These interfaces need to be tested during component and
system development. Because a system is divided into many
components, to test the system, a lot of component tests are
involved. The automation of testing can reduce time and cost.

Up to now, investigated test automation techniques have
had three steps: test data generation, test case generation, and
expected result generation. Each step is automated using
additional information, but there is no automation technique
into which all of these test procedures are integrated. For
SCBS testing, there is a need to automate these three steps to
achieve efficiency.

This paper introduce a testing framework in which all three
steps of SCBS for robot development are automated. Section 2
shows previous testing frameworks with Section 3 showing the
elements of the suggested framework. Section 4 provides
example cases of the automated testing framework. Further
research topics will be discussed in Section 5.

*Resrach supported by OPRoS Project.

Hong Seong Park is with Kangwon National University, Chuncheon, S.

Korea (phone: 82-33-250-6346; fax: 82-02-2212-7217; e-mail: hspark@

kangwon.ac.kr).

Jeong Seok Kang was with Kangown National University. He is now with

ybrain (e-mail: jskang@kangwon.ac.kr).

Wook-jae Jo is with Kangown National University. Chuncheon, S. Korea

(e-mail: jwj0104@gmail.com).

Mi-sook Kim is with Kangwon National University, Chuncheon, S. Korea

(e-mail: kim.misook3@gmail.com).

II. RESEARCHED TEST AUTOMATION FRAMEWORK

The electronic business XML (ebXML) test framework [5]
is a testing tool for ebXML confirmation and integration
testing. It has 6 steps: test planning, designing test
requirements, designing test suites, confirming the testing
definition, and test suites execution. However, the test domain
is limited to e-commerce.

The TETware framework [6] includes test related
management, and test and result reporting. Also, the
framework provides an API between the test process and test
code for a confirmation test, and a performance and loading
test. It includes a test case controller, common test suites’
structures, test cases’ structures, and various programming
interfaces for test case development. The main function is the
test case and the test code; this framework does not provide the
functions for distributed environment.

The Test Process Management System (TPMS) [7] follows
the characteristics of a test management supporting tool as
defined by the International Software Testing Qualifications
Board [8] and the test management process defined by the
International Organization for Standardization [9]. TPMS
includes risk analysis and management, design test strategy,
test case execution and management, fault tracing and
management, test report generation, and test activity
management. This framework is mainly about risk
management and reporting for general software development;
it lacks functions for a distributed environment.

The Software Test Automation Framework (STAF) [10]
tests with the communication of STAF Proc., a daemon, for
various distributed test environments. STAF provides internal
and external services supported by multiple operating systems
and computer programming languages, and it is reusable.
Major STAF services are processes, file system, compression,
and monitoring as internal services, and e-mail management,
event management, and HTTP [11] management as external
services. This framework tests in various distributed
environments, but its test resource management and test case
generation are manual.

This paper introduces the SCBS test automation
framework considering a distributed test environment. This
framework has a Test Automation Engine (TAE), Test Agent
(TA), Configuration Management Servers (CoM Server). TAE
manages test activities, test design, test relationships, test
environments, and test execution. TA is allocated in various
test environments, and connected to the central TAE by a
network and to a CoM Server to share the resources for test
execution.

Automated Testing Framework Considering Distributed Testing

Environment*

Hong Seong Park, Jeong Seok Kang, Wook-Jae Jo, and Mi-sook Kim, Kangwon National University

III. MAJOR FUNCTIONS IN AUTOMATED TESTING

FRAMEWORK

Important functions of automated testing framework are
testing resource management, test script generation, testing
functions in changed resources, and test execution in a
distributed testing environment

A. Test resource management

TA is a unit of test resource management, and it has
information of SCBS and information of the test. Fig. 1 shows
the class diagram of test activity.

Figure 1. Class diagram of test activity

 “ITestActivity” is an interface class for every test in
common. The “SCBTestInfo” class is SCBS information of the
testing target. The “TestItem” class has testing items of the test
information. The “TestScriptInfo” class saves test script
information in an automated test framework. The
“TestActivity” class can be inherited to extend user-defined
purpose.

B. Test activity lifecycle

A finite state machine is used to manage the 8 states of the
test activity lifecycle. Fig. 2 shows the movement of the state.
When a test activity is created, the state goes into the
“Created” state. At the point a user requests a test execution,
the state moves to “Waiting”. If any test related resources are
changed when the request arrives, then the state goes to
“Changed” first, then moves to “Waiting”. As it depends on
the type of activity execution, when the execution time is
reached, activity resources are deployed into TAs, and then the
state changed to “Running.” When an error occurs during
deployment, the state goes to “Error.” If the test was executed
without errors, and all the test cases of the test activity are
finished, then the state goes to “Success.” If any test cases fail,
the state moves to “Failure.” If users choses to end the process
during the test execution, then the state moves to “Stopped.”

Figure 2. States of test activity

C. Test activity execution types

There are 4 types of test activity execution: immediate,
reserved, periodic, and resource changing. It is determined in
the Test Activity Scheduler (TAS) in Fig. 3.

Figure 3. Scheduling of test activity

The TAS has queues on each execution type. When the
execution command arrives from the users, TAS checks the
type of test activity, then inserts the test activity into the queue
for the type of test activity. The test activity stays until the
previous test is finished, then the TA in the environment
downloads the resources of the test activity, and tests it.

D. Test Script Auto Generation

The test script generator of the test automatic engine
generates the source codes of the test driver component and
test stub component. The test driver component manages the
flow of the test and connects to the Provided Interface (an
OPRoS component) of the SCBS. The test stub component
connects to the Required Interface (another OPRoS
component) of the SCBS. The test driver component (from
OPRoS) reads the test cases and classifies them as Provided
Interface (also from OPRoS). Then “TestControlInterface” is
used to initialize the test stub component. Test cases are typed
to call appropriate interfaces of SCBS, then the test results
compared to the expected results and stored. The test stub
component receives the test data, which are related to the
Required Interface among the test cases, and is input into
SCBS whenever the test cases are executed.

E. Continuous test based on Resource-Change-Aware

The test relationship management (TRM) module is
executed to related test activity when test resources are
changed. The test resource monitor, test resource analyzer, test

relationship manager compose the TRM. The test history of
the test resources in the CoM Server is monitored periodically
by the test resource monitor module. Then any changes of the
test resource are sent to the test resource analyzer module. The
module uses only changed information, excluding added or
deleted information, to get the related test activity. The
information is transferred into the test relationship manger
module. The test relationship module has the execution
manager re-run the changed test activity.

F. Automatic test execution in distributed test environment

The test automatic engine (TAE) runs tests by TAs

allocated in various test environments and the CoM Server.

There are the test agent registry step, test execution ready step,

test execution step, and test result and reporting step.

In the test agent registry step, a test agent registers itself

and its test environment information into the TAE. Then the

test environment manager in the TAE stores this information

into a database.

In the test execution ready step, a user requests an

execution of test activity, then the execution manager checks

whether any TA is connected in the test environment. If so,

then the manager requests the execution to the activity

scheduler and inserts the test activity into the test execution

queue connected to the TA. The test activity distribution

module requests the test agent to run the test activity in the

execution queue. When the TA receives the test execution

request, the test resource related to the requested test activity

by the CoM Server is downloaded and finishes the readiness

for the test execution.

In the test execution step, the test agent builds the test

application in the downloaded activity. If it is a success, the

test agent executes the application. When all the test cases are

executed, the test application notifies the end of execution into

the test activity executor.
In the test result and reporting step, the test agent uploads

the result into the CoM Server, sends the result into the TAE.
Finally, the TAE downloads the test result from the CoM
Server and reports it to the user.

IV. RESULT OF IMPLEMENTATION OF TEST AUTOMATION

FRAMEWORK

The TAE of the test automatic framework for various
environments was implemented in Java [12], the database in
MySQL [13], and the web-based user interface in Flex. The
test agent module which runs tests in the various environments
was implemented in Java, and the CoM Server, which shares
test resources between test agents and test automatic engines,
is implemented in SVN [14].

To verify the functionality of web-based test automation
tool, OPRoS based robot software components were used: the
Mobile Component, Distance Sensor Component, Control
Component, and Statement Generation Component. Its
structure is given in Fig. 4.

Figure 4. Components and interfaces for a test

This application is to print guide information while the
mobile-base moves using a distance sensor to avoid obstacles.
The Distance Sensor Component gets the distances through
dsc_in1, des_in2, dsc_in3, dsc_in3, dsc_in4, dsc_in5, dsc_in6,
dsc_in7, and dsc_in8 from the sensor hard ware. The Control
Component calls the interfaces of the Distance Sensor
Component through cc_in1, cc_in2, and cc_in3 to get the
distances from any obstacles that the mobile base encounters.
If the distance is less than a pre-determined distance then the
Control Component calls the interfaces of the Mobile
Component through mc_in1 to reduce speed of the wheel or
rotate the direction of the mobile base. At the same time, the
Control Component calls the interfaces of the Statement
Generation Component through sgc_in2 and sgc_in3 to print
the guide information. The Statement Generation Component
prints the message when the entry is given through sgc_in1.

Fig. 4 shows there are 15 input interfaces to test in the
application, 6 interior and 9 exterior. The test case was
generated based on IOReACT [15]. For example, the interface
sgc_in1 has a value of language types of a guide message. The
test cases are a Korean type message and an English type
message because users choose the language types for the
interface test. Table 1 shows the number of test cases
generated automatically for each interface.

TABLE 1 THE NUMBER OF TEST CASES OF INTERIOR/EXTERIOR INPUT

The test driver template code for test cases is generated as

in Fig. 5.

Figure 5. Web based test drive template code

Fig. 6(a) shows choosing a test activity and compiling it
over the Web. Fig. 6(b) shows that downloading the test
activity resources from a SVN into a test agent in the robot and
building these resources. Fig. 6(c) shows that the test is
running while the robot is moving.

Figure 6. Distributed test environment for test execution

After all the test cases are executed in a physical robot, the
result is in the table in Fig. 7(a), and its graphical test results
are Fig. 7(b). The test shows that a test case of a 370 degree
rotation shows the result false, which agrees with the expected
result.

Figure 7. Result of the test in a real test environment

V. CONCLUSION

This test framework runs in various environments: a Web

environment for receiving users’ input and presenting the test

result to users, a SVN server to maintain the test resources and

test results, and a test agent in the robot. This framework

delivers ease of use from automatic generation and distribution

of testing driver and stub components to save time and effort.

Among future research interests would be sharing various test

environments in infrastructure as a service in a cloud.

REFERENCES

[1] S. Han, M.S. Kim, H.S. Park, “Open software platform for robotic

services”, in IEEE Robot. Autom. Magaz., vol. 17 (1), pp.100-112,

2012.

[2] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foot, J. Leibs, R.

Wheeler, A.Y. Ng, “ROS: an open-source Robot Operating System”, in

ICRA Workshop on Open Source Software, vol. 3, 2009.

[3] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, W.-K. Yoon,

“RT-middleware: distributed component middleware for RT(robot

technology)”, in IEEE/RSJ International Conf. on Intelligent Robots

and Systems, pp. 3933-3938, 2005.

[4] H. Bruyninckx, “Open robot control software: the OROCOS project”, in

IEEE International Conf. on Robotics and Automation, vol.3, pp.

2523-2528, 2001.

[5] ebXML Test Framework Specification, Version 1.0, Technical

Committee Specification,

http://www.oassis-open.org/committees/tc_home.php?wg_abbrev=ebx

ml-iic.

[6] TETware, http://tetworks.opengroup.org/Products/tetware.htm.

[7] TPMS, http://www.sten.or.kr/index.php.

[8] ISTQB, https://www.istqb.org.com.

[9] ISO, http://www.iso.org.

[10] STAF, http://staf.sourceorge.net.

[11] R.T Field, J. Gettys, J. C. Mogul, H. F. Nielsen, L. Masinter, P. J. Leach,

T. Bemers-Lee, “Hypertext Transfer Protocol-HTTP/1.1” IETF RFC

2616.

[12] Java, https://java.com.

[13] MySQL, https://mysql.com.

[14] SVN, https://subversion.apache.org

[15] Jeong Seok Kang, Hong Seong Park, “Input/output Relationship Based

Adaptive Combinatorial Testing for a Software Component-based

Robot System”, in Journal of Institute of Control, vol.21(7),

pp.699-708, 2015.

