Trust in and dependence on imperfect automation

Jessie Yang, PhD Industrial and Operations Engineering University of Michigan, Ann Arbor

Automation dependence and performance | Motivation

Use of automation to assist human performance

Aircraft collision avoidance system

Alarm management

Clinical decision support system

Ideally – performance gain; In reality, not always..

Grounding of the Royal Majesty, 1995

Crash of Korean air flight 801, 2001

Automation dependence | Introduction

- Inappropriate use of automation^{1,2}
- Two major reasons
 - Automation is sometimes imperfect^{3,5}
 - Trust-reliability miscalibration^{4,5}

- Trust in automation belief, intention, attitude², behavior
- Trust is an attitude, usage/dependence is a behavior

Automation dependence | Two types of miscalibrations

- Little attention on the human operator's ability
- Another factor: self-confidence in performing a task manually^{1,2,3}
- Overconfidence is highly likely⁴, especially when tasks are difficult⁵
- Both types of miscalibrations should be modelled in human-automation interaction

Automation

reliability

Trust in

automation

Automation dependence | Research model

Study 1 | Hypotheses

Study 1 | Confidence-accuracy inversion¹

Study 1 | Experimental Design

67 participants, age = 25.1 (SD = 3.8)

Study 1 | Results summary

No. of answer change = 17.43 + 0.025 **Trust**^{***} - 0.045 **Confidence** ^{***}

No. of answer change WtC = 22.81 + 0.038 Trust^{***} – 0.046 **Confidence** ^{***}

No. of answer change CtW = 22.81 – 0.003 Trust – 0.043 Confidence ***

• Self-confidence: strong and stable predictor of automation dependence

Study 1 | Results summary

No. of answer change = 17.43 + 0.025 **Trust**^{***} - 0.045 **Confidence** ^{***}

No. of answer change WtC = 22.81 + 0.038 Trust*** – 0.046 **Confidence** ***

No. of answer change CtW = 22.81 – 0.003 Trust – 0.043 Confidence **

• Self-confidence: strong and stable predictor of automation dependence

Final recognition accuracy = 19.94 + 0.56 Initial recognition accuracy^{***}

- [if reliability < ability] * 0.38 Overtrust^{**}
- [if reliability > ability] * 0.26 Overconfidence*
- Both types of miscalibrations harms performance

Automation dependence | Study 2

Automation dependence | Study 2

Consider the following hypothetical situation

Mark

Mark and Clive had exactly the same medical condition. They were presented to the hospital with stomachache

Consider the following hypothetical situation

Medical Decision Aid

Low risk Endoscopy unnecessary

Low risk Endoscopy unnecessary Considering family history, age, dietary etc, a clinical decision support system suggested both Mark and Clive were at low risk of getting stomach cancer – endoscopy was unnecessary

Consider the following hypothetical situation

Medical Decision Aid

Low risk Endoscopy unnecessary

pre-cancerous polyps removed

Low risk Endoscopy unnecessary diagnosed with stomach cancer years later

Consider the following hypothetical situation

In both cases, the medical decision aid made mistakes – we expect a decrement in trust. But **similar decrement**?

Study 2| Results

Cond.	Initial recognition	Recommend- ation	Final recognition	Trust adjustment
0: 000	Wrong	Wrong	Wrong	-4.0(0.5)
1:001	Wrong	Wrong	Correct	
2: 010	Wrong	Correct	Wrong	2.0 (0.3)
3: 011	Wrong	Correct	Correct	2.7 (0.5)
4: 100	Correct	Wrong	Wrong	-6.2(1.2)
5: 101	Correct	Wrong	Correct	-4.3(0.6)
6: 110	Correct	Correct	wrong	
7: 111	Correct	Correct	Correct	1.5 (0.2)

Automation success -> trust increases

*** *p* < . 001

Automation failure -> trust decreases

Study 2 | Results

Cond.	Initial recognition	Recommend- ation	Final recognition	Trust adjustment	
0: 000	Wrong	Wrong	Wrong	-4.0(0.5)] -
1:001	Wrong	Wrong	Correct		
2: 010	Wrong	Correct	Wrong	2.0 (0.3)	-
3:011	Wrong	Correct	Correct	2.7 (0.5)	
4: 100	Correct	Wrong	Wrong	-6.2(1.2)	-
5: 101	Correct	Wrong	Correct	-4.3(0.6)	-
6: 110	Correct	Correct	wrong		
7: 111	Correct	Correct	Correct	1.5 (0.2)	-

|Trust decrement| > |Trust increment| *** p < . 001</pre>

Study 2 | Results

Cond.	Initial recognition	Recommend- ation	Final recognition	Trust adjustment
0:000	Wrong	Wrong	Wrong	-4.0(0.5)
1:001	Wrong	Wrong	Correct	
2:010	Wrong	Correct	Wrong	2.0 (0.3)
3: 011	Wrong	Correct	Correct	2.7 (0.5)
4: 100	Correct	Wrong	Wrong	-6.2(1.2)
5: 101	Correct	Wrong	Correct	-4.3(0.6)
6: 110	Correct	Correct	wrong	
7: 111	Correct	Correct	Correct	1.5 (0.2)

Automation successes lead to greater increment of trust, if a user is less capable of completing the task on his or her own. $p_{<.05}$

Study 2| Results

Cond.	Initial recognition	Recommend- ation	Final recognition	Trust adjustment
0:000	Wrong	Wrong	Wrong	-4.0(0.5)
1:001	Wrong	Wrong	Correct	
2:010	Wrong	Correct	Wrong	2.0 (0.3)
3: 011	Wrong	Correct	Correct	2.7 (0.5)
4: 100	Correct	Wrong	Wrong	-6.2(1.2)
5: 101	Correct	Wrong	Correct	-4.3(0.6)
6: 110	Correct	Correct	wrong	
7: 111	Correct	Correct	Correct	1.5 (0.2)

Automation failures lead to **less** decrement of trust, if the outcome is not harmed. *** p < .001

Study 2 | Results

- |Trust decrement| > |Trust increment|
- Trust assessment is not entirely rational
 - Not benchmarked strictly against predetermined objective criteria
 - Contrast effect based on one's ability: a correct recommendation is appreciated more if one cannot perform the task
 - Hindsight bias based on task outcomes: a wrong recommendation is "forgiven" if it does not harm

Automation dependence | Study 3

Study 3 | Experiment setting

Evaluating Effects of User Experience and System Transparency on Trust in Automation Thursday 1:30 pm

TOGGLE

Time left: 0.07 Trial: 3/12 Trial: 2/12 Score: 2/45 Score: 1/30 **Detection Task** Tracking Task

Study 3 | Results

- Over repeated interactions, users' trust becomes more appropriately calibrated
- With likelihood alarm, the calibration process is faster

Takeaways

- Appropriate calibration is the key
- Focus on the characteristics of the automation and of the human
- To improve human-automation team performance
 - To minimize trust-reliability miscalibration
 - To minimize confidence-ability miscalibration

Acknowledgement

