

Collaborative Robots in industry

Robots in Society: Event 2 – Current robotics

Nahema Sylla

08/11/2017

H S S M I © 2016

Introduction and context

Human-Robot Collaboration in industry

Principle: Human and robot sharing workspace without any fence

Types of Collaboration (ISO 10218)

Safety Monitored Stop

Hand guiding

Speed and Separation Monitoring Power and Force Limiting

Benefits and key applications in automotive industry

Maximum value for

- ✓ Ergonomics improvements
- \checkmark Use as a third hand
- \checkmark Line balancing activities
- ✓ Quality improvement
- \checkmark Better floor space utilization
- \checkmark Versatile and flexible operations

Key applications

Screwing

Loading

Handling

Assembly

Gluing

Inspection

the game changer: collaborative robotics

The Future is Man with Machine **#COBOTICS**

Cobots cheaper than fenced options

Cobots at forefront of the factory of the future

to collaborative robots in the next 5 years

Issue

- Perception from leading UK Automotive manufacturers that UK plants are falling behind their European and Global competitors in the application of Collaborative Robots
- UK plants perceived as less productive
- The issue is largely seen as the interpretation of standards and the development of implementation guidelines

Objectives of the working group

- Understand the root cause of this competitive disadvantage
- Facilitate safe, consistent and cost effective deployment of Collaborative Robots systems in UK automotive plants
- Develop and share best practice related to safe application

Partners and consultation process

Partners

• Supported by the Health and Safety Executive

Consultation process

- Commenced its activities in August 2016
- Meetings at regular intervals over a period of 10 months
- Workshops, consultations, interviews and gathering information through questionnaires
- Wide variety of inputs collected from universities, robot manufacturers, Catapult centres, software providers, automotive OEM's, trade organisations, and other European industrial safety organisations

Main outcome

'Implementation of Collaborative Robot Applications'

http://hssmi.org/portfolio-items/implementation-collaborative-robot-applications-reportindustrial-working-group/

Aim:

- Provide a definition of a truly collaborative application and identify the differences to the standard collaboration modes
- Understand the legal requirements of safety compliance versus technical specifications
- Develop implementation guidelines for truly collaborative applications along with guidance for risk assessment
- Identify key applications for automotive manufacturing
- Establish key limitations for collaborative applications

Truly Collaborative application

Definition given by the working group:

"A truly collaborative application is a **programmable electromechanical system** that has been designed, constructed, assessed and locked through a **certified change control process**, within a **prescribed** environment to operate within a **tolerable level of risk** in all reasonably foreseeable modes whilst collaborating in a **shared workspace** with a **trained employee** performing a standard operation."

Installation Guidelines for Collaborative applications

Risk Assessment

ISO 12100: "Safety of machinery, General principles for design, Risk assessment and risk reduction"	Table B1, 2 & 3	Hazards, hazardous situations and hazardous events to consider to perform risk assessment
ISO 10218-2: "Robots and robotic devices, safety requirements for industrial robots, Part 2: Robot systems and integration"	Section 5.11.2 (a)	General requirements of collaborative robot operation; points to consider to perform risk assessment Ex: Robot characteristics, end-effector hazards, layout of the robot system, operator location, operator path application-specific hazards
ISO 10218-2: "Robots and robotic devices, safety requirements for industrial robots, Part 2: Robot systems and integration"	Section 5.11.5.5	Safety features to select for ensuring a safe work environment when using a truly collaborative robot
ISO/TS 15066: "Robots and robotic devices, Collaborative robots"	Section 4.2 (b)	Access and clearance factors to consider to reduce risks and hazards when designing a collaborative application.
ISO/TS 15066: "Robots and robotic devices, Collaborative robots"	Section 4.3.2 (b)	Identification of hazards related to robot applications, including Ex: end effector and workpiece hazards, operation motion and location, influence of the surroundings
ISO/TS 15066: "Robots and robotic devices, Collaborative robots"	Section 4.3.3	Identification and documentation of reasonably foreseeable tasks and hazards combination associated with the robot cell

TS 15066 : Bio Mechanical Limits

1
<u>i</u>

			Quasi-static contact		Transient contact		
Body region	Specific body area		Maximum permissible pressure ^a p _s N/cm ²	Maximum permissible force ^b N	Maximum permissible pressure multiplier ^c P _T	Maximum permissible force multi- plier ^c F _T	
Skull and fore-	1	Middle of forehead	130	120	not applicable	not applicable	
head ^d	2	Temple	110	130	not applicable		
Face ^d	3	Masticatory muscle	110	65	not applicable	not applicable	
N	4	Neck muscle	140	150	2	2	
Neck	5	Seventh neck muscle	210		2	2	
Back and shoul-	6	Shoulder joint	160	210	2	2	
ders	7	Fifth lumbar vertebra	210		2	2	
Chest	8	Sternum	120	140	2	2	
Chest	9	Pectoral muscle	al muscle 170		2	Z	
Abdomen	10	Abdominal muscle	140	110	2	2	
Pelvis	11	Pelvic bone	210	180	2	2	
Upper arms and	12	Deltoid muscle	190	150	2	2	
elbow joints	13	Humerus	220		2	2	
1 ° °	14	Radial bone	190		2		
Lower arms and wrist joints	15	Forearm muscle	180	160	2	2	
	16	Arm nerve	180		2	1	

- General industry perception is that the standard is restrictive
- Regular working on line more force and pressure are experienced on the shop floor
- For payloads above 5kg within a shared workspace speed of 250mm/sec to 400mm/sec would satisfy the TS15066 (from a study of 6 applications)

Limitations

Low payload Low variety of parts to handle

Level of risk Unpredictability of human behaviour

Low speed Difficulty to meet the cycle time

Limited applications Shared workspace solve specific problems

Introduction

- Risk assessment for collaborative applications is extremely critical

- Gap in conducting risk assessment virtually before the physical installation

Goal: Create a virtual risk assessment tool for truly collaborative applications

Robot task/ script Operator task & positions

End effector CAD model

nufacturing

- Developed as an add-on of an existing simulator
- Simulator should include both human and robot dynamic models

RACE = **R**isk Assessment for **C**ollaborative work **E**nvironment

Feature 1: Programing the Robot task

Option a: Script Writing

	a 64/761008 kg 🔀 🖶 emisScient 64/761012 kg 😒 💌 emisScient 243/360/4 kg 😒 📄 emisScient 3094/7012 kg 🕄 🚍 emisScient 3094/7012 kg
	- This is a threaded script, and is just an example!
	ointHandles={-1,-1,-1,-1,-1,-1}
	doint l=,//, do
	Johnnahures[1]-Simberobjecthandie(hbs_liwa_/_sour_origine)
	- Set-up some of the RML vectors:
1	e1=110
	ccel=a0
	aive== vel*math.pi/180,vel*math.pi/180
	axAccel={accel*math.pi/180,accel*math.pi/180,accel*math.pi/180,accel*math.pi/180,accel*math.pi/180,accel*math.pi/180}
	$axJerk = \{jerk * math.pi/190, jerk * math.pi/180, jerk * math.pi$
	argetVe1={0,0,0,0,0,0,0,0}
	argetDes1=/00tmath ni/190 90tmath ni/190 170tmath ni/190 -90tmath ni/190 90tmath ni/190 90tmath ni/190 91tmath
	argerroi-100 math.p/100,50 math.p/100,100 math.p/100,100 math.p/100,50 mat
	argetPos2={-90*math.pi/180,90*math.pi/180,180*math.pi/180,-90*math.pi/180,90*math.pi/180,90*math.pi/180,00*math.pi/180,0}
5	<pre>imRMLMoveToJointPositions(jointHandles,-1,currentVel,currentAccel,maxVel,maxAccel,maxJerk,targetPos2,targetVel)</pre>
	anach Tea 2 - 10 0 0 0 0 0 0 0
	algebross={///////////////////////////////////
	······································

Option b: Graphical programming

Define manually the robot trajectory with waypoints From inverse Kinematics

Feature 2: Operator envelope

- Envelope around the human model
- Collision tolerance
- Diameter = body segment length

Feature 3: Collision detection

- Detects any collision:
 - Human/Robot
 - Human Envelope/Robot
- Visual output: colour change during simulation

Feature 4: Speed calculation

- Maximum recommended speed calculation:
 - According to the body region
 - Compliance with ISO/TS15066

1aximum Allov	ved Robot !	Speed Calcula	tion done	
lease check t	he txt file c	on the desktop		
_		v		N IA

Skull and florehead: Vmax=357 01719771081mm/s	
Face: Vmax=252.44928150153 mm/s	
Neck: Vmax=1264.9110640674 mm/s	
Back and Shoulders: Vmax=637.18129288296 mm/s	
Chest: Vmax=502.61538199922 mm/s	
Abodmen: Vmax=624.4108334173 mm/s	
Pelvis: Vmax=1005.2307639984 mm/s	
Upper arm and Elbow: Vmax=1080.1234497346 mm/s	
Lower Arm and Wrist: Vmax=1192.5695879999 mm/s	
Recommended running sneed: 252 (4029150152 mm/s	

speedrecommendations - Notenad

Next steps

Robot script transcription:

Import the robot script to program the robot task

Collision Report with details:

- Body region affected, time
- Type of contact (point, line, contact),
- Screenshot

Operator task

Graphical programming

