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A pneumatic actuator is an attractive option for creating explosive robotic motions, such as jump-

ing and running, because of its high power-to-weight ratio and compliance. However, control of

pneumatic actuators suffers from the nonlinear dynamics of air and system identification prob-
lems. We propose a method combining deep-learning of local linear dynamics of the system and an

iterative linear quadratic regulator (iLQR) for explosive motions by pneumatic robots. To verify
the performance of the method, we performed a simple task to control the position and velocity

of a one-degree-of-freedom slider driven by a push-pull pneumatic cylinder. The results show that

the slider reached a target position with less than 1.4% error (3.5 mm against a 250 mm range of
motion) with a task period of 0.5 s. The velocity was 1.09 m/s (starting from a negative position)

and 0.551 m/s (starting from a positive position) against the target velocity of 1.00 m/s.

1. Introduction

Locomotion in animals is dynamic covering a broad variety of demands, particularly when

the animal is either fleeing from predators or is chasing prey in the wildness to survive.

For example, animals can jump onto target locations, jump over various gaps, and run

on irregular terrain. Dynamic locomotion is also useful for mobile robots to expand their

locomotive range. As dynamic locomotion by nature is explosive, we include motions such

as throwing and hitting in the following discussion. For explosive motion, it is important to

reach a specific state that includes position and velocity at a desired time. For example, the

end-effector must be a specific state at the time when a ball is being hit.

A pneumatic actuator is suitable for giving robots the ability to perform dynamic mo-

tions because of its high power-to-weight ratio and compliance. Explosive motions, such

as jumping,1,2 jump-and-hit,3 running,4,5 and swinging a badminton racquet6 have been

achieved by pneumatic robots using heuristic feed-forward commands. These robots used a

heuristic method because air actuation has a delayed response because of its compressibility;

mathematical modeling is therefore difficult due to the non-linear and complex nature of the

dynamics. However, designing commands manually for various motions is time-consuming

and it produces a limited number of motion sets.

Ball throwing was achieved using an iterative linear quadratic regulator (iLQR) with a

mathematical model.7 The iLQR8 provides optimal control with a small computational cost.

Optimal control is effective for explosive motions of pneumatically actuated robots because it

can use nonlinear dynamics or make transitions without feedback control. However, precise

control depends on modeling accuracy making it difficult to improve mobility control in

pneumatic systems because of the complexity and non-linearity. Moreover, when applied to

a robot with many degrees of freedom, the calculation of complex forward dynamics might

be a problem because explosive motions need fast calculations.
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Learnt pneumatic dynamics is promising for solving those problems. The position control

of a soft robot arm with a pair of antagonistic pneumatic actuators was achieved using model

predictive control and dynamics learned with a deep neural network.9 Position tracking by

pneumatic actuators was achieved using non-linear model predictive control with an echo

state Gaussian process,10 which is a type of recurrent neural network useful for modeling dy-

namic systems. Dexterous manipulation with a pneumatically actuated 24-degree-of-freedom

(DoF) tendon-driven hand was achieved using a method that optimizes trajectories using an

iteratively refitted time-varying linear model.11 These cited papers describe optimal control

with learnt dynamics of a pneumatic system for non-explosive motion. However, to the best

of our knowledge, there have been no studies applying it to explosive motions.

In this paper, we propose a method for a pneumatic control system using iLQR with deep

local linear dynamics for explosive motion. After we explored the appropriate architecture of

the dynamics network, we examined the performance of the method by a single pneumatic

cylinder.

2. Method

2.1. Iterative Linear Quadratic Regulator (iLQR)

Nonlinear optimal control for discrete time steps is a process that calculates an input time-

series u0:T−1 by minimizing the cost sum from time 0 to T , written as

J(x0, u0:T−1) =

T−1∑
t=0

l(xt, ut) + lf(xT ), (1)

when defining the running cost function l(xt, ut) at each time step t and final cost function

lf(xT ) at final time T in the system xt+1 = f(xt, ut). Here, xt is the state and ut is the

input. Using the final cost, this method can deal with the state at a specific time that

is often important in explosive motions, such as hitting and throwing objects. The iLQR

method solves this problem by linearly approximating the system locally at each time as

xt+1 = Axt+But+o, optimizing it once, and iterating it several times. The calculation time

of this method is shorter than other nonlinear optimal control methods, such as differential

dynamic programming or the conjugate gradient method because of the linearization.

Previous studies7,8 set A = fx(x, u), B = fu(x, u), and o = O using the Jacobian deter-

minant in a mathematical model, where O is the zero matrix. In this study, we applied iLQR

to pneumatic actuators with complicated dynamics using deep local linear dynamics A,B, o,

as described in Sec. 2.2. Our approach potentially contributes to an effective computation by

replacing the complex calculation of the Jacobian determinant from a mathematical model

with learnt dynamics.

2.2. Learning locally linear dynamics

Watter et al. used an approach that combines deep learning of locally linear dynamics and

iLQR.12 They constructed locally linear dynamics on the latent compressed state space to

deal with high-dimensional image inputs. However, designing the cost function of iLQR

in the latent space is not intuitive. Also, state compression is not necessary if the state

dimension is small. Therefore, we estimated locally linear dynamics in the raw state space.

We denote sensor inputs at step t as st and control inputs at step t as ut. We also use vt−n:t =

(vTt−n, v
T
t−n+1, · · · , vTt )T to denote a concatenated vector. We define the system as containing

the state xt = st−d:t and control inputs ut. We estimate the locally linear dynamics of the

system A(st−i:t, ut−i:t), B(st−i:t, ut−i:t), and o(st−i:t, ut−i:t) from the previous i (≥ d) step

inputs st−i:t and ut−i:t. We estimate the next states x̂t+1 by applying these dynamics. We
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Fig. 1. Schematic diagram (top) and photo (bottom) of the experimental setup.

repeat the same prediction p times with the predicted state as the next input. Finally, we

obtain the estimations x̂t+1:t+1+p. We optimize the locally linear dynamics estimators A,

B, and o through supervised learning by minimizing the prediction error for the p steps,

L = 1
|D|
∑

(st−i:t, ut−i:t, st+1:t+1+p)∈D ‖xt+1:t+1+p − x̂t+1:t+1+p‖22, where D is a data set and

|D| denotes the size of the data set. The estimated dynamics x̂t+1 = Axt+But+o is written

as [
st−d+1:t

ŝt+1

]
=

[
O I

A′

]
st−d:t +

[
O

B′

]
ut +

[
O

o′

]
, (2)

where I is the identity matrix and O is the zero matrix. Therefore, we estimate the partial

matrices A′(st−i:t, ut−i:t), B
′(st−i:t, ut−i:t), and o′(st−i:t, ut−i:t). We use neural networks

to estimate A′, B′, and o′.

3. Experiments

3.1. Setup

We developed a control system with a push-pull pneumatic cylinder and pressure control

valves (Fig. 1). We suppose that the control system is a component of a robot with multiple

degrees of freedom. The control target is the states of a slider attached to the piston rod

of the pneumatic cylinder. The cylinder has a chamber diameter of 25 mm and a stroke of

250 mm (CM2XB25-250Z, SMC Corp.). We controlled the inner pressure of each chamber

through pressure control valves (Tecno Basic, Hoerbiger Corp.) with pressure commands

u = (u1, u2).

The maximum supply pressure was set to 0.3 MPa. The inner pressures p1 and p2 of the

chambers were measured with pressure sensors (XFGM-6001MPGSR, Fujikura, Ltd.). The

position y of the slider was measured with a linear potentiometer (LP-250FJ-5K, Midori

Precisions Co., Ltd.). We used the inner pressures and the position as sensor data s =

(p1, p2, y).
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Fig. 2. Architecture of the prediction network. We denote sensor and control inputs at step t as st and

ut, respectively. We also use vt−n:t = (vTt−n, v
T
t−n+1, · · · , vTt )T to denote a concatenated vector. We define

the system as containing the state xt = st−d:t and control inputs ut. We estimate the locally linear dy-

namics of the system A(st−i:t, ut−i:t), B(st−i:t, ut−i:t), and o(st−i:t, ut−i:t) from the previous i (≥ d) step

inputs st−i:t and ut−i:t. We only parametrized their partial matrices A′(st−i:t, ut−i:t), B′(st−i:t, ut−i:t),
and o′(st−i:t, ut−i:t) (see Eq. (2)).

3.2. Collecting data for learning locally linear dynamics

In learning the dynamics, we collected data from 1,000 trials. Each trial consisted of the

following process: start at a random position, fit the slider to the starting position with

proportional control, and collect data with random control inputs. Each trial included 20

control steps and a sampling period set at 50 ms. The maximum control input pressure was

0.3 MPa, and the supply pressure at the pressure regulator attached to the air tank (38 L)

was 0.5 MPa.

3.3. Network architectures for estimating local linear dynamics

For the network architecture (Fig. 2), we applied fully connected layers to the inputs

st−i:t, ut−i:t and a succeeding long short-term memory (LSTM) layer as an option. The

LSTM is a recurrent neural network. The sensor st and control ut were normalized to [0, 1].

All of the layers used layer normalization.13 A fully connected layer followed each of these

shared hidden layers to calculate A′, B′, and o′. We investigated several neural network

architectures to estimate the system dynamics. We searched for the best neural network

architecture by changing the depth of the fully connected layers, the number of units in

each layer, the use of LSTM, time series length of inputs i, and the time series length of

sensors d contained in the system’s state. A comparison is shown in Fig. 3.

The number of prediction steps p was 20. We used 800 training datasets and 200 valida-

tion datasets. Each batch contained all the training data; the number of epochs was 50,000.

We applied the Adam optimizer14 with gradient clipping to restrict the norm of the gradient

to at most 5.0. The learning rate decayed from 10−2 to 10−12 with a decay rate of 0.96.

The best performance had a 2.5% error ratio in the sensor range per element on average,

where the network had a hidden layer of 32 units, a succeeding LSTM layer with 32 units,

input length i = 1, and d = 1 (Fig. 3). We found that the use of LSTM was the most effective

to improve performance. Figure 4 compares the per-element prediction error between the

best architecture with LSTM and the best architecture without LSTM. The network with

LSTM had fewer errors than did the network without LSTM, except for the prediction error

of the position y at the 20th step. Prediction errors tended to increase as the prediction steps

increased.
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Fig. 3. Loss profile of the LSTM with different parameters. Each label hidden (h) lstm(l) x(i)u(i)Ax(d)x(̂p)
means an instance with hidden units h, the number of units of the succeeding LSTM layer l, the number of

inputs to calculate locally linear dynamics i, the dimension of the system state d, and the prediction length
p.
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Fig. 4. Prediction errors of the learnt dynamics with different neural networks architectures.
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Fig. 5. Trajectories (top) and velocity trajectories(bottom) of motion generated in a pneumatic cylinder
from different initial positions. The dot indicates the target position, and the slope of the line through the

dot represents the target velocity (top). The dot indicates the target velocity (bottom). The blue curve
starts from a positive position (0.075 m), the green curve starts from a negative position (-0.075 m).

3.4. Explosive motions using iLQR

We controlled the movements of a pneumatic cylinder by iLQR using an LSTM network

with best prediction performance. We estimated the system described in Eq. (2) with i = 1

and d = 1, that is,

xt+1 =

[
O I

A′

]
xt +

[
O

B′

]
ut +

[
O

o′

]
. (3)

The running cost l(xt, ut) and final cost lf(xT ) were defined as
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l(xt, ut) = µT
uB(ut, u, u) + µT

xB(xt, x, x) (4)

lf(xT ) = xTTRxT , (5)

where B(x, x, x) = −(ln(x−x)+ ln(x−x)) is the log barrier function, µu and µx are weight

vectors, and R is a final weight matrix. We set R to include the weight of the position yt
and velocity (yt − yt−1)/dt. As such, we aimed to reach the target position and velocity at

the final time step T = 10 (0.5 s) with the constraint

x < x < x (6)

u < u < u. (7)

We calculated iLQR several times while gradually decreasing the weights µu and µx. The

optimization result then approached the solution of the constraint problems to minimize

Eq. (5) with Eqs. (6) and (7) as the weights approached zero, where R = diag([0, 0, 1, 0, 0,

100]).

The experimental result is shown in Fig. 5. Planning with iLQR generated control inputs

that successfully achieved the target state. As a result, the slider achieved a target position

with less than 1.4% error (3.5 mm against a 250 mm range of motion). The target velocity,

1.00 m/s, was an average velocity calculated from the difference between the positions

at 0.45 s and 0.50 s, because the control period was 0.05 s. The results for the average

velocity between 0.45 s and 0.50 s were 1.09 m/s (green curve) and 0.551 m/s (blue curve).

However, the results for the instantaneous velocity at 0.50 s were 0.220 m/s (green curve)

and 0.0674 m/s (blue curve).

4. Discussion

In this experiment, the slider reached the target position at the desired time. To achieve

this task, we have to predict precisely the dynamics of the pneumatic system, which has

complex dependency through time. The top of Fig. 3 shows that the neural network with

LSTM can learn more quickly and predict more precisely than the neural network without

LSTM. These results suggest that capturing the complex structure of the pneumatic system

is more effective with LSTM.

However, there are two problems. It was more difficult to achieve both position and

velocity than either property separately in the optimization process. We consider a start

from a positive position (blue curve in Fig. 5) a more difficult condition than a start from

a negative position (green curve) because of the need to move once in a direction opposite

to that of the target velocity. The result of the optimization was affected by the initial

control input series. Therefore, it is important to determine the initial control series. The

other problem is the low time resolution for the instantaneous velocity, which creates a time

gap for the velocity. It is more important for explosive motions to control the instantaneous

velocity than the average velocity. To deal with the instantaneous velocity, there are two

possible methods. One is to shorten the control period, although predicting the target state

may be made more difficult as the steps in the prediction increase. The other is to include

the instantaneous velocity in the predicted state, in contrast to calculating the velocity by

the difference between the positions in this experiment.

5. Conclusion and Future Work

To overcome the difficulty in controlling the pneumatic actuator, we proposed a method to

combine deep learning of the local linear dynamics and iterative linear quadratic regulator
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(iLQR) for control of the explosive motions for pneumatic robots. We controlled a pneumatic

cylinder to reach a target position and velocity at the desired time. The position error is

less than 1.4% error (3.5 mm against a 250 mm range of motion). The target velocity, the

average velocity calculated for each control period (0.05 s), was 1.00 m/s. The results for the

average velocity between 0.45 s and 0.50 s were 1.09 m/s (starting from a negative position,

the case easy to optimize) and 0.551 m/s (starting from a positive position, the case difficult

to optimize).

This is a first step in motion generation of a pneumatic robot in explosive motions for

arbitrary targets, including dynamic locomotion. Future work will include an implemen-

tation of feedback control using real-time calculations and applications of this method to

pneumatic robots with multiple degrees of freedom.

Acknowledgments

This work was supported by the Japan Society for the Promotion of Science, KAKENHI

Grants JP17H06575, JP18K18087, and JP18H05466, and the Kayamori Foundation of In-

formational Science Advancement.

References

1. R. Niiyama, A. Nagakubo and Y. Kuniyoshi, Mowgli: A bipedal jumping and landing robot
with an artificial musculoskeletal system, in IEEE International Conference on Robotics and
Automation (ICRA), 2007.

2. K. Hosoda, Y. Sakaguchi, H. Takayama and T. Takuma, Autonomous Robots 28, 307 (2009).
3. K. Tanaka, S. Nishikawa, R. Niiyama and Y. Kuniyoshi, Humanoid robot performing jump-and-

hit motions using structure-integrated pneumatic cable cylinders, in IEEE-RAS International
Conference on Humanoid Robots (Humanoids), 2017.

4. R. Niiyama, S. Nishikawa and Y. Kuniyoshi, Advanced Robotics 26, 383 (2012).
5. K. Narioka, A. Rosendo, A. Sproewitz and K. Hosoda, Development of a minimalistic pneu-

matic quadruped robot for fast locomotion, in IEEE International Conference on Robotics and
Biomimetics (ROBIO), 2012.

6. S. Mori, K. Tanaka, S. Nishikawa, R. Niiyama and Y. Kuniyoshi, IEEE Robotics and Automa-
tion Letters (RA-L) 3, 1727 (2018).

7. G. K. H. S. L. Das, B. Tondu, F. Forget, J. Manhes, O. Stasse and P. Soueres, Performing
Explosive motion using a multi-joint arm actuated by pneumatic muscles with quasi-DDP
optimal control, in IEEE Conference on Control Applications (CCA), 2016.

8. W. Li and E. Todorov, Iterative linear quadratic regulator design for nonlinear biologoical
movement systems, in International Conference on Informatics in Control, Automation and
Robotics (ICINCO), 2004.

9. M. T. Gillespie, C. M. Best, E. C. Townsend, D. Wingate and M. D. Killpack, Learning nonlin-
ear dynamic models of soft robots for model predictive control with neural networks, in IEEE
International Conference on Soft Robotics (RoboSoft), 2018.

10. J. Huang, Y. Cao, C. Xiong and H. T. Zhang, IEEE Transactions on Automation Science and
Engineering , 1 (2018).

11. V. Kumar, E. Todorov and S. Levine, Optimal control with learned local models: Application
to dexterous manipulation, in IEEE International Conference on Robotics and Automation,
2016.

12. M. Watter, J. Springenberg, J. Boedecker and M. Riedmiller, Embed to control: A locally linear
latent dynamics model for control from raw images, in Neural Information Processing Systems
conference (NeuralIPS), 2015.

13. J. L. Ba, J. R. Kiros and G. E. Hinton, arXiv preprint arXiv:1607.06450 (2016).
14. D. P. Kingma and J. Ba, arXiv preprint arXiv:1412.6980 (2014).

132


