
CLAWAR 2019: 22nd International Conference on 
Climbing and Walking Robots and the Support 
Technologies for Mobile Machines,
Kuala Lumpur, Malaysia, 26-28 August 2019. 
https://doi.org/10.13180/clawar.2019.26-28.08.14

ON THE DETECTION AND LOCALIZATION OF SHIN COLLISIONS

AND REACTIVE ACTIONS IN QUADRUPED ROBOTS

VICTOR BARASUOL, GEOFF FINK, MICHELE FOCCHI,

DARWIN G. CALDWELL and CLAUDIO SEMINI

Dynamic Legged Systems, Istituto Italiano di Tecnologia (IIT), Morego st., 30, 16163, Genoa, Italy

E-mail: <first name>.<last name>@iit.it

In this work, we investigate the impact of shin (distal limb) collisions on the performance of

quadruped locomotion. In particular, we carry out a detailed study on the locomotion performance
sensitivity to systematic errors and delays in the estimation of the shin contact location. We

propose a sensor-less model based on kinematics to estimate the location of a single contact
point at the shin level. In order to improve the robustness of robot locomotion, we use insights

from our sensitivity study and our proposed model to develop a reactive strategy to detect and

feedback information about the contact into the trunk controller. The effectiveness of the proposed
approaches is experimentally demonstrated on the HyQ robot.
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1. Introduction

Unexpected collisions are very likely to occur in legged robots when traversing unstructured

terrain. However, many research works assume perfect knowledge of the environment and fo-

cus on generating motions at locations that avoid collisions. On the other hand, information

about the topology of the environment might not be available in real-world applications.

In these cases, the robot-environment interaction is not guaranteed to happen only at the

end-effector, i.e., the hands or feet of the robot. This situation is challenging because most

advanced control strategies used to stabilize the trunk require the exact location and Ja-

cobian of the contact points.1–3 Moreover, the inclination of the contact surface and its

frictional properties are also necessary to properly distribute the contact forces.

Consequently, to achieve robust locomotion, it is important to detect unexpected colli-

sions and use them as feedback for the stabilizing trunk controller. Relevant research effort

has been devoted to finding methods that detect and estimate the location of arbitrary

contacts occurring anywhere along the robot structure (not only at feet and hands).

Some approaches use force/torque (F/T) sensors combined with a distributed skin to

capture external forces that are applied to arbitrary locations.4–7 However, most robots do

not have this type of sensor as they significantly increase the complexity of the platform.

Furthermore, most of these sensors are not capable nor designed to handle strong interaction

forces; they are typically designed for tasks involving human-robot interaction.

Other methods for detecting and estimating external forces are based on model-based

observers of generalized momenta (GM).8 The basic idea of these approaches is to com-

pare the computed torque with the real torque to infer the action of the external forces.

Their advantage is that they require only proprioceptive measurements (torque and encoder

measurement) without the need of additional force sensors.

De Luca et al.9 presented the first approach able to simultaneously detect collisions,

find the contact link (not the contact location) and estimate the external forces. Contact
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isolationa in most GM approaches rely on thresholding the estimation coming from an

observer (termed residual) that is a filtered version of the external wrench. However, most

(GM approaches are applied only to fixed-base robots. Vorndamme et al. developed an

approach for floating-base robots (humanoids) in which they combined and compared the

GM approach with a F/T-sensor-based approach.10 In addition to contact isolation, some

approaches try to estimate the contact location at the price of increased complexity, e.g.,

Manuelli et al. proposed an optimization-based approach based on particle filters to detect

and localize multiple contacts on a humanoid using only proprioceptive sensors.11 In general,

the majority of approaches based on proprioceptive measurements fail to determine the

exact contact location on the most distal link. Also both Vorndamme et al.10 and Manuelli

et al.11 rely on a very accurate model of the robot. Moreover, they are demonstrated only

in simulation with a robot that is stationary when an external force is applied. They do not

consider the implications of what happens when the robot contact is made during motion.

When it comes to real applications, all the approaches based on filters or observers are

strongly affected by modeling errors, sensor noise, offsets, friction and structural compliance.

Commonly, these aspects present themselves as an increase in estimation errors. Moreover,

due to the fact that they are filter-based, these approaches present an inherent delay (e.g.,

due to filter dynamics or the time it takes to reach the threshold to trigger the detection)

that often poses a limit on the gains of the observers.

In the context of quadruped robots, shin collisions are typically undesired events. De-

pending on the configurations of the robot leg, i.e., knee bent forward (KBF) or knee bent

backward (KBB),12 shin collisions can cause the robot to get stuck when moving forward

or backward. During blind locomotion this situation becomes even more critical since the

robot cannot acquire detailed information about the surface below it.

In this work, we investigate the effect that systematic errors and delays in contact es-

timation have on quadruped locomotion performance. Initially, we describe a study of the

impact of shin collisions on dynamic locomotion, then we propose a kinematic strategy to

localize collisions on the most distal joint (i.e., the shin). We believe the approach is generic

enough to be extended to humanoids. We demonstrate with real experiments the increase

in locomotion performance given by exploiting the knowledge of the (online) estimated shin

contact in the stabilizing controller. To the best of the author’s knowledge this is the first

time that a strategy based on shin collision detection has been successfully applied to a real

quadruped robot.

The contributions of this paper can be summarized as follows:

• A study about the effect of shin collisions during quadruped locomotion and a

proposal on how to react to them independent of whether the shin-obstacle contact

position can or cannot be estimated;

• The impact of systematic errors and delays in the estimation of the shin collision

location;

• A simple model for a sensor-less strategy to detect shin collisions and estimate the

shin-obstacle contact position;

• Hardware experiments closing the loop with an optimization-based trunk controller2

where the output of the shin estimator is exploited in the optimization.

2. Locomotion sensitivity to the shin collisions and their detection

This section contains one of the main contributions presented in this paper: the study of

the locomotion sensitivity to shin collisions. The conclusions of this study are the basis

aContact isolation is identifying which robot part (e.g., link) is involved in a collision.
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of the reactive strategies proposed in the following sections. For this study, we considered

a walking trot because it is currently the most commonly chosen dynamic gait for rough

terrain locomotion and it is very sensitive to shin collisions.

Our study aims to understand how delayed detections and systematic errors in the con-

tact localization affect the locomotion performance. To answer these questions, we created

an ideal simulation scenario in Gazebo where we required HyQ13 to step over a 16 cm high

platform while trotting at a certain speed as seen in Fig. 1 (left). Virtual shin sensors (one

for each leg) are able to detect a collision at the shin and localize the position on the shin

where the collision occurs.

In this simulation, the motion generation and the control is done by the Reactive Con-

troller Framework14 (RCF). The RCF has a trunk stabilization module that uses leg contact

Jacobians, that, by default considers all contacts happening at the foot level.2 Our trunk

controller also uses the information about the surface inclination and the friction coefficient

to generate ground reaction forces that respect the associated friction cone. We call the re-

active action to a shin collision the stance reflex. When a shin collision occurs our proposed

stance reflex uses the information coming from the virtual shin sensor to update the contact

Jacobian, the friction coefficient and the orientation of the friction cone. It is important

to note that when a shin collision happens, the friction cone, which was previously defined

by the surface inclination, becomes defined by the orientation of the shin as illustrated in

Fig. 1 (left) by the translucent red cones.

To understand the impact of delayed detections and systematic localization errors (i.e.,

constant offset error) on the locomotion performance, we ran hundreds of simulations con-

sidering the following parameter variations: two shin-obstacle friction coefficients (0.6 and

0.9); two robot forward velocities (0.2 m/s and 0.35 m/s), a range of detection delays (0 ms

to 160 ms); and a range of systematic localization errors (-8 cm to 8 cm). For statistical

reasons, we ran five trials for every possible combination. Figure 1 (right) shows the results.

In the figure each 5-trial set is represented by a red cross (unsuccessful) or by a large cyan

dot (successful). An unsuccessful set is when the robot has failed at least once, when trying

to step on the platform with the hind legs. In this case, the robot gets stuck because the

hind shins keep slipping on the platform edge. As locomotion parameters, the robot trots

with a step frequency of 1.3 Hz and a duty factor of 0.65b. Given that these values result

in a stance period of 0.5 s, the maximum detection delay of 160 ms considered in this study

corresponds to nearly 35% of the stance period.

The four charts in Fig. 1 (right) reveal many interesting details on how the locomotion

performance is sensitive to delayed detections and localization errors in the shin collision.

We summarize them in the following observations:

Obs-1: The lower the friction between the shin and the obstacle, the more detrimental

the shin collisions are to the locomotion performance. A lower contact friction leads to

higher shin slippage accelerations that are difficult to stabilize even if the collision location

is precisely known. This is seen in the top-left plot of Fig. 1 (right) in correspondence to

zero systematic errors. Moreover, low contact frictions restrict the set of feasible stabilizing

ground reaction forces and, in some cases, a feasible solution cannot be found to overcome

the obstacle.

Obs-2: The higher the robot velocity, the less the shin collisions are detrimental to the

robot motion. This relationship regards the impact of the shin collisions on the overall

robot momentum, i.e., the higher the robot velocity, the higher the momentum and the less

important the momentum disturbance caused by the shin collisions. This relationship can

be noticed when observing the increased number of successful 5-trial sets between the top

bThe duty factor is the ratio between the stance duration and the duration of the gait cycle.
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Fig. 1. Left) Simulation scenario used to study the effect of shin collision in quadruped locomotion during

a walking trot. The translucent cones represent the friction cones where ground reaction forces should lie in

order to avoid slippage. The gray arrow shows the sign convention for the shin contact location. Right) Effect
of systematic errors and delays in the estimated shin contact position. Red cross markers and cyan dots

show when the robot failed or succeeded, respectively, in climbing a 16 cm high platform. Top and bottom

plots show the results associated to a robot forward velocity of 0.2 m/s and 0.35 m/s, respectively. Left and
right columns show the results associated to Coulomb friction coefficients of 0.6 and 0.9, respectively.

and the bottom plots of Fig. 1 (right).

Obs-3: Positive and negative systematic errors have opposite effect on the locomotion per-

formance. Positive errors are detrimental because they cause the robot to get stuck. This

happens because: positive errors increase the chance of shin slippage (a larger shin lever

arm makes the trunk controller generate larger joint torques and thus larger ground re-

action forces); and positive errors create a momentum around the shin contact point that

induces the knee to move (counter-clockwise in the figure) in a direction that is opposite to

the robot motion. These effects are illustrated in Fig. 2 (a-b). However, negative systematic

errors are likely to help the robot overcome the obstacle. This happens because they create

a momentum around the shin contact point that tends to make the shin accommodate and

slide on the surface without disturbing the motion. Since negative errors correspond to a

lower shin contact lever arm, the trunk controller generates lower joint torques and thus

lower ground reaction forces. See Fig. 2(c-d).

Obs-4: The higher the delay in the estimation of the contact, the higher the chance that

a shin slippage occurs. This is because a delayed shin contact estimate, will always differ

from the actual contact location with a positive estimation error. The resulting behavior is

similar to the one described in Obs-3 for positive systematic errors with the difference that

the side-effects are strongly dependent on the shin slippage velocity (i.e., for a given delay,

the higher the slippage velocity, the higher the estimation error). This behavior is illustrated

in Fig. 2(e-h).

Obs-5: Figure 1 (right) shows an interesting compensation effect that occurs between the

delayed estimations and systematic errors. Looking at each of the plots, we can observe a

trend of successful 5-trial sets along a diagonal strip from top-left to bottom-right corners

of each plot (clearly seen in the bottom-left plot). We consider this behavior a compensation

effect due to the fact that the negative systematic errors tend to compensate the positive

estimation errors due to delayed estimates. This behavior is illustrated in Fig. 2(i-l) and

represents an important finding of this study.

3. A simple sensor-less approach for collision detection on distal limbs

In this section, we propose a simple sensor-less approach based purely on the robot kinemat-

ics to detect when a single-point robot-environment interaction occurs at the distal limbs
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Fig. 2. Illustration of the behaviors described in the observations of Sec. 2: subfigures a) to b) and c) to

d) illustrate the shin behavior when the contact location estimates present positive and negative systematic

errors, respectively, and regard Obs-3; subfigures e) to h) are related to Obs-4 and illustrate the shin
behavior when there is delay in the contact detection; subfigures i) to l) regard Obs-5 and illustrate the

compensation effect between the delayed detections and the presence of negative systematic errors.

(i.e., shins and forearms). Our approach relies on the assumption of a virtual element, a

RRP kinematic structure (i.e., a spherical arm), where the prismatic joint represents the

distal limb and the two rotary joints represent the contact point between the robot distal

limb and the environment. As a proof of concept, we describe a reduced-order model that

we applied to detect and localize a contact point at the distal links of quadruped robots, i.e.,

at the shins. The reduced model describes the virtual spherical arm in the robot’s sagittal

plane. The association of the states of the virtual arm and robot shin is illustrated in Fig. 3

for HyQ’s left-hind leg (all virtual arm states are defined in the figure caption).

Fig. 3. Simplified model of the spherical arm by considering motions in the robot sagittal plane. The model
is used to estimate the shin contact position Cs and the shin slippage velocity Ċs during a shin collision

with an unknown obstacle. All variables are expressed in the world frame W. The shin angle θs is defined

as the angle between the horizontal plane (orthogonal to the gravity vector) and the robot shin in contact
with the obstacle. The radius of the shin is rs. The position of the knee with respect to the contact position

is Pk.

According to the model illustrated in Fig. 3, the position of the knee Pk = (Pkx
, Pkz

)
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with respect to the shin pivot position can be described as:

Pkx
= rs cos(π/2 + θs) + Cs cos(θs) (1)

Pkz = rs sin(π/2 + θs) + Cs sin(θs) (2)

Differentiating with respect to time and using trigonometric identities, the knee velocity can

be computed as

Ṗkx
= −rs cos(θs)θ̇s + Ċs cos(θs) − Cs sin(θs) θ̇s (3)

Ṗkz
= −rs sin(θs)θ̇s + Ċs sin(θs) + Cs cos(θs)θ̇s (4)

Since the goal is to find a description that connects the robot states with the states related

to the collision, i.e., Cs and Ċs, we rearrange (3) and (4) to obtain the following relationship[
Ṗ ′kx

Ṗ ′kz

]
=

[
cos(θs) − sin(θs)θ̇s
sin(θs) cos(θs)θ̇s

]
︸ ︷︷ ︸

Js

[
Ċs

Cs

]
(5)

where Ṗ ′kx
= Ṗkx

+ rs cos(θs)θ̇s, Ṗ
′
kz

= Ṗkz
+ rs sin(θs)θ̇s, and Js is the collision Jacobian.

Given that estimates for Ṗ ′k and θs can be provided by the robot state estimation, Cs and

Ċs can be computed using the inverse of Js, i.e.,[
Ċs

Cs

]
︸ ︷︷ ︸
Ĉ

=

[
cos(θs) sin(θs)

− sin(θs)θ̇
−1
s cos(θs)θ̇

−1
s

]
︸ ︷︷ ︸

J−1
s

[
Ṗ ′kx

Ṗ ′kz

]
︸ ︷︷ ︸
Ṗ ′k

(6)

4. Detecting and reacting to shin collisions using the proposed model

To detect, localize and deal with shin collisions, we propose a simple strategy that uses both

the estimated collision states Cs and Ċs and the observations described in Sec. 2. To detect

the collision we consider the estimate Cs and the slippage distance ∆s defined as the integral

of Ċs with respect to the time elapsed from a detected leg stance phase (e.g., in HyQ the

stance phase is detected from joint torque sensors).

Given Cs and ∆s, a detection is triggered when ∆s is higher than a specific threshold

or when Cs is consistent with the shin length. Due to the fact that Cs tends to be a

noisy estimate, we consider it only when its covariance enters an acceptable range and the

correspondent shin angular rate and knee velocity estimates present a magnitude that leads

to an acceptable signal-to-noise ratio.

When the collision is detected through Cs, the localization of the contact at the shin

is automatically acquired. However, such information is not known when the detection is

triggered through ∆s. In this case, using the outcomes from Obs-3 and Obs-4, we assume

an initial contact location Cs0 that is closer to the knee than the foot. This increases the

chances for the localization error to be negative. Obs-4 is linked to this process because ∆s

is the result of an integration, and thus has inherent delay.

As a reaction, the estimated shin contact location and the shin orientation are fed back

into the stabilizing algorithm (trunk controller) to properly distribute the ground reaction

forces. In the next section we show experimental results of the application of this approach.

5. Experimental results

We implemented the strategy proposed in Sec. 4 on the HyQ robot. The proposed strategy

is implemented inside the Reactive Controller Framework14 that generates and controls the

robot motion for a blind walking trot gait. In this experiment, a step is placed in between
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the robot front and hind legs and the robot is commanded to trot backwards at 0.35 m/s

without the knowledge of the environment. Figure 4 shows the snapshots of the experiments

to compare locomotion performance with and without the detection and contact feedback

from the proposed strategy.

For the detection criteria based on Cs, we consider a minimum Cs covariance of 0.005 m,

minimum shin angular rate of 0.05 rad/s, and a minimum shin tangential velocity of

0.15 m/s. For the detection based on ∆s, we define a minimum slippage distance of 0.02 m

and an initial contact estimate Cs0 = 0.15 m. All these parameters are chosen based on the

accuracy and noise of the signals provided by the robot state estimator. The more accurate

the state estimation outputs, the lower the magnitude of the thresholds.

1a 2a 3a 4a 5a 6a

1b 2b 3b 4b 5b 6b

Fig. 4. Snapshots of the experimental tests where HyQ is performing a blind walking trot backwards.
a) The top snapshots show the performance when there is no feedback about the shin contacts. In this

case, HyQ gets stuck because both front shins cannot stop sliding on the step (see 3a-6a). b) The bottom

snapshots show the performance of the proposed approach where contact information is detected and fed
back to the trunk controller. The robot successfully overcomes the step by stopping the shin slippage during

the collisions (see 2b and 3b). Link to the video of the experimental tests: https://youtu.be/vHc5ZpkCy8Y

The bottom snapshots in Fig. 4 show the motion sequence of a successful test where

two shin collisions are detected and fed back into the trunk controller. These two collisions

happen at snapshots 2b and 3b. Figure 5 shows the most relevant detection and estimated

variables during such collisions. We note that by observing the slippage distance ∆s the shin

slippage stops after the collision is detected. This allows the robot to properly use the shin

contact, and overcome the step, by better distributing the ground reaction forces.

The robustness and performance of the proposed approach are not directly dependent

on the gait the robot executes, but rather on the accuracy of the robot state estimates (i.e.,

the estimates of the linear and angular velocities of the robot trunk). These estimates are

used to obtain Ṗ ′k, θs and θ̇s, which directly affect the estimate of Cs, as described in (6).

The estimate of Ċs is more stable, since it does not depend on θ̇s, and it is likely to be the

one detecting the shin contact, through ∆s, when the accuracy of the robot state estimator

is degraded.

6. Conclusions

In this paper, we presented a pioneer study on how delays and systematic errors, which

are present in shin contact detection and localization algorithms, affect the performance

of a dynamic quadruped gait. Detailed observations were described and illustrated. One of

the major outcomes of these observations is that negative systematic errors are much less

detrimental and, in some cases, can be intentionally included to compensate for delayed

detections. Furthermore, we proposed a generic kinematics-based model to estimate contact

location at robot distal limbs, and described a reduced model to localize contact points on

quadruped shins. The proposed model and the outcomes of the study were put together to

build a simple and effective strategy that was tested on a real robot to overcome a step

during blind locomotion.
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Fig. 5. Detection and estimation signals for the experimental test shown in Fig. 4, with the time scale

that reports the two collisions that happen during the snapshots 2b and 3b: the snapshot 2b shows a shin
collision for the left-front (LF) leg and the snapshot 3b shows a shin collision for the right-front (RF) leg.

The two top plots shows the stance status detected for both LF and RF legs. The translucent areas show

when the collision is detected through the Cs estimate (i.e., Cs estimate satisfying the criteria described in
Sec. 4) and through ∆s (i.e., when the slippage distance is higher than its threshold). Red and blue colors

represent the LF and RF associated signals, respectively.
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