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Source searching is an important task in many real world applications and it has been widely studied using 

various types of robotic systems. In this task, the robot has to first detect the presence of the source in the 

search space before it can continue to locate the source to its approximate location. In order to efficiently 

detect the source, the robot must optimize search space exploration. Lévy flight is one of the optimal 

algorithms for search space exploration. However, for a destructive type of source searching, Lévy flight is 

susceptible to two problems. Firstly, the possibility of immediate returns to the previously visited site is 

high. Secondly, robot tends to temporarily stuck at the boundary of the search space until a new angle that 

bring robot away from the boundary is generated. In this paper, the solutions to the two problems are 

proposed by imposing angle constraints to Lévy flight and by using boundary reflection, reflectively. The 

results show that the exploration capability of the Lévy flight with the proposed strategy is improved 

compared to the conventional Lévy flight model.     

1. Introduction

Robotics has enormous potential for real world applications and tasks, especially the one that 

is not possible or inefficient to be performed by humans. In general, different types of task that 

suit robotics systems (e.g. single or multiple autonomous robots) can be classified as tasks that 

are dangerous to human, task that require area coverage, tasks that demand simultaneous 

deployment and task that require redundancy [1]. Source searching or source seeking is one of 

the tasks that falls within the classification. In real world scenarios, source searching and 

localization is an important task in many applications such as in a search and rescue operation, 

environmental monitoring, detection of chemical leakage, mine countermeasures, searching 

for a flight recorder (black box) and scientific studies.  

In a real source searching problem, there are three possible scenarios can occur due to 

robot limited sensing range and intensity decaying property of the source. Firstly, there is a 

possibility that the source is not detected as soon as the robot is deployed into the search 

space. In this scenario, the robot must rely on an algorithm which is independent of source 

intensity to optimize search space exploration in order to optimize detection time. Secondly, 

there is possibility that the intensity of the source is directly detected once robots are deployed 

into the search space. In this case, an algorithm which exploits source intensity measurement 

must be used to optimize convergence speed and accuracy of convergence. In the third 

scenario, robots do not detect the source once they are deployed, but the source may become 

detected after robots explore the search space and vice versa. In this case, independent 

algorithms for both detectable and undetectable source signals must be considered. As a result, 

a complete and optimal source searching algorithm must be able to work in both situations 

where source signal is detected and source signal is not detected. Currently, this issue has not 
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been thoroughly studied where in most current studies it assumed that source signal is always 

detected or a nonoptimal random movement is considered when source is not detected [2-4]. 

As a result, the overall efficiency source searching is not optimal because the time taken to 

locate the source not only influenced by the time taken to locate the source once detected but it 

is also influenced by the time taken to detect the source. In this study, the issue of source 

detection for the individual robot is considered which can be considered as a complimentary 

algorithm for the existing source searching algorithm such as algorithm based on Particle 

Swarm Optimization (PSO) [5], Glowworm Swarm Optimization [6], Ant Colony 

Optimization [7], etc.  

Animals including insects and microorganisms employ different types of random 

movement as searching and hunting strategies. This type of movement is employed when 

preys or food sources are not located within their sensing range [8]. Random movement is also 

employed when available information about the source location is not sufficient to assist 

searching [9]. In addition, microorganisms have no adequate sensing capability to allow them 

to directly detect and sense food sources from a far distance. This limitation makes them rely 

heavily on random walk (RW) to detect the source intensity before they can locate the source 

site by following the gradient [10]. Thus, in order to maximize chances of detection to avoid 

starvation and to optimize energy consumption, an optimal random search strategy is adopted 

by many types of animals [11].  

In biological studies, several types of RW have been used to model animal random 

searching and foraging strategies. However, Lévy flight (LF) is the most efficient random 

searching strategy for many animal species [12]. For examples, LF has been used to model 

pelagic birds foraging pattern, animals including human hunting strategy and organisms food 

searching pattern [13]. In general, LF is formed by the combination of short (i.e. local 

exploration) and long steps length (i.e. global exploration during the transition between two 

local sites). As a result, the area explored by LF is larger compared to other types of RW for 

an equal number of steps. Thus, LF permits the individual searcher to visit a new search site 

which have not been previously visited and minimize frequency of revisiting a similar search 

site [14]. The global and local exploration characteristics of the LF increase the chances of a 

searcher to locate the source by balancing the two exploration strategies.  

However, for a destructive type of source searching (i.e. a source only need to be located 

only once), Lévy flight is susceptible to two problems from the perspective of the individual 

robot. Firstly, the possibility of immediate returns to the previously visited site is high during 

local exploration due to randomly generated turning angle. Secondly, robot tends to 

temporarily stuck at the boundary of the search space until a new angle that bring robot away 

from the boundary is generated. As a result, the exploration capability of the robot is not 

optimal. In this study, a reliable strategy to eliminate the two problems is proposed to improve 

exploration capabilities of the robot. 

2.    Lévy Flight Model  

In search space exploration, LF is used to generate waypoints need to be followed by a robot 

in order to explore the search space. The FL consists of two parameters which characterized its 

exploration characteristics, namely flight length and turning angle. Based on Figure 1, the next 

waypoint, pk = (xk ,yk) generate by LF at the k
th

 update step can be calculated by 
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in which xmin ≤ xk ≤ xmax and ymin ≤ yk ≤ ymax where [xmin,ymin] and [xmax,ymax] are the search space 

boundaries, l is the step length and ϕ is the absolute turning angle of LF. The turning angle can 

also be expressed as a relative turning angle, φ given by 
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The turning angles are sampled from a continuous uniform distribution, ϕ ∈ P(ϕ) ← 

U[ϕmin,ϕmax] defined by the following probability density function (PDF)  
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The range of the angles can be either be ϕ ∈ [-π,π] or [0,2π]. The distribution of the LF flight 

length can be approximated as a power-law distribution representing a truncated Lévy-stable 

distribution is given by [15, 16]: 

  

   31for   llP
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where μ is the scaling factor. Notice that for μ ≤ 1 and μ > 3 motion is no longer Lévy instead 

it becomes ballistic motion and Brownian motion, respectively.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.  Parameters of LF of a searcher 

 

2.1.    Angle Constraint 

To improve exploration efficiency of the previous LF model, turning angle can be constrained 

by implementing a lower limit as shown in Figure 2. As shown in the Figure 2, an LF with 

angle constraint has better exploration as shown by the shaded cells illustrated in Figure 2(b) 

compared to LF without angle constraint as indicated by the shaded cells shown in Figure 2(a) 

for a two successive steps. Thus, the turning angles of the LF can be constrained within a 

range of θmin ≤ θ ≤ π to optimize exploration and at the same time maintain local exploration 

capability of the LF.  The angle θ in term of absolute turning angle of two successive steps is  
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A relationship between absolute turning angles between two successive LF paths is shown 

Figure 3. A new constrained waypoint, pk+1
 
due to θ limit

 
can be expressed as 
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where the new turning angle expressed as turning limit are given by 
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where Δθk,k-1 = θmin – θk and 0 ≤ θmin ≤ π/2. Thus, by considering this angle, the possibility of 

immediately returning to the previously searched site is minimized.  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

       (a)                                                       (b) 
Figure 2. Impact of angle constraint (a) LF without angle constraint, θ < θmin (b) LF with angle constraint, θ ≥ θmin 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Turning angle constrained to minimize immediate return to the currently visited sites 
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2.2.    Boundary Reflection 

Another issue is the problem at the boundary of search space where robots may have to wait at 

the boundary for several iterations before the uniformly randomly generated angle bring the 

robot away from the boundary (i.e. due to invisible path) as illustrated in Figure 4. To solve 

this issue, robot path can be reflected as shown in Figure 4. From the figure and based on the 

vector summation approach, 
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where d  is the unit vector and N is the unit normal vector to the search space boundary. 

Solving (9) for a and substitute into (8) gives  
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Thus, from Figure 3, the reflected path can be expressed as 
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Figure 4: Invisible LF path and the corresponding path reflection at the search space boundary 

 

3.    Result and Discussion 

In this study, the LF parameters are set to be μ = 1.1 and lmin = 1.5 m for a 25×50 m
2
search 

space with detection radius, rd = 6 m. Based on these values, the performance of the proposed 

LF modification can be evaluated. Since the source searching process considered in this study 

is a destructive search, it is necessary to minimize the possibility of revisiting a similar site in 

a search space which has been recently visited to improve exploration of the individual robot. 

Figure 5 illustrates Percent Area Coverage (PAC) (see Appendix) difference between LF with 

and without angle constraint (i.e. PACangle_constraint  – PACangle_nonconstraint). The PAC of LF with 

angle constraint is improved compared to LF without angle constraint. The larger the value of 

θmin the greater the improvement is observed. This is because a large value of θmin reduces the 

possibility of the robot to immediately revisit the previously searched area (i.e. the grid cell 

used for PAC computation) and thus, exploration of a new search site is improved. However, 

the improvement of the PAC is relatively small (i.e. up to 3.8% when θmin = 90
o
) because the 

robot is only restricted not to return to the previously searched area in a two successive steps 
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but it may possibly return to the same site after several iterations. In general, this trend can be 

observed for different sizes of search space, but with decreasing PAC for a similar number of 

maximum iteration used for simulation.  

In terms of Frequency of Visiting (FoV) (see Appendix), larger θmin means smaller FoV 

because the robot is capable of exploring a new search space which has not been recently 

explored. The impact of θmin on the FoV improvement is demonstrated through difference of 

FoV between LF with and without angle constraint (i.e. FoVangle_constraint  – FoVangle_nonconstraint) 

as depicted in Figure 6. The negative value means FoV of the LF without angle constraint is 

larger compared to FoV of the LF with angle constraint. From the figure it can be observed 

that the larger the value of θmin, the better the improvement of the LF. However, since 

according to definition the FoV is independent of search space size, the corresponding value 

of FoV does not significantly change as the search space size increases. The improvement of 

LF through the combination of angle constraint and boundary reflection can clearly be 

observed in Figure 7. The PAC of LF agent with angle constraint (AC) and boundary 

reflection (BR) is better than a pure LF where LF+AC+BR reaches certain PAC level faster 

(i.e. less iterations) compared to LF as can be observed in the figure. For example, LF 

achieves 98% PAC at k = 2000 while LF with AC and BR achieved 90% PAC for the same 

number of steps. The shaded region represents the range of PAC values for the entire number 

of runs. Thus, it is clearly proven that the proposed LF with angle constraint and boundary 

reflection successfully improved exploration of the individual robot. Figure 8 shows an 

example of the implementation of the proposed LF modification for 5 different robots 

deployed from the same initial position, but different initial orientation where the source 

detection radius is assumed to be rd = 6 m and located at (0,20).        

 

 

Figure 5: PAC for different values of θmin in different sizes of search space using optimal LF parameters for 25 m by 

50 m search space 

 

 

 
 

Figure 6: The average FoV for different values of θmin in different sizes of search space using optimal LF parameters 
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Figure 7: The average of 1000 runs number of steps, k taken to reach certain value of PAC for pure LF and LF with 
angle constraint (AC) and boundary reflection (BR) 

 

 
Figure 8: Robot trace during source detection with μ = 1.1, lmin = 1.5 m, θmin = 15o and rd = 6 m. Trace indicator: blue 

(R1), red (R2), yellow (R3), purple (R4), green (R5), pink (inter-robot communication link) 

 

Conclusion and Future Work 

This study proposed turning angle limit and boundary reflection for LF in order to optimize 

the search space exploration capability of the robot. The results show that the proposed 

strategy successfully improved exploration capability of the robot with better PAC and FoV. 

In the future, the improvement of LF for better exploration capability considering multiple 

robots will be studied. 
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Appendix 

The PAC and FoV are defined as follow: 
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where NGvis is the number of visited and NGtot is the total number of grids divisions of search 

space. 
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where FoVi is the frequency of visiting of grid i. 
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