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A solvability of the direct Lyapunov first matching condition in terms of the generalized coordinates method 

is presented for the stabilization of underactuated, inverted pendulum cart.  This work represents a continued 

development of previously published techniques for the exact controller design formulation without 

introducing control law terms or approximations.   The use of the control law, instead of inverse dynamics 

to determine the coordinate histories for the unspecified axes, produced good performance results showing 

a faster response to stabilize both the actuated and non-actuated axes. The stability is achieved from the 

proper shape of the potential, the positive definiteness of the KD matrix, and the non-positive rate of change 

of the Lyapunov function.   

1. Introduction

There are several different types of mechanical systems which can be termed as

underactuated. The degrees of freedom (DOF) of a system are defined by the system’s number 

of independent movements.  Underactuated mechanical systems have fewer actuators than DOF. 

Some examples such as satellites, aircraft, overhead crane loads, and missiles have at least one 

non-actuated DOF.  Furthermore, the work presented here develops a nonlinear control law   

for the asymptotic stabilization of underactuated systems.  This is accomplished by finding the 

solution of matching conditions that arise from Lyapunov’s second method, analogous to the 

dissipation of energy.  The direct Lyapunov approach (DLA) offers a wide range of applications 

for underactuated systems since the algebraic equations, ordinary differential equations, and 

partial differential equations stemming from the matching conditions are more tractable than 

those appearing in other approaches. The DLA was first presented in  [1] and was applied to the 

stabilization of a class of systems characterized by dynamic equations where the nonlinearities 

depended on only one generalized coordinate and generalized velocity.  Notable contributions 

in the study of stabilizing underactuated mechanical systems have been made by [2], [3] and [4] 

with the DLA. Another recent study is the Solvability of the Direct Lyapunov First Matching 

Condition in Terms of the Generalized Coordinates (DLFMC) of  [5] which also contain more 

extensive literature reviews.  All these approaches rely on a matching equation solution method. 

The DLFMC provides a method to solve the first matching condition and shows the tools for 

the control law. The main concentration of the control design methods previously mentioned, 

as well as the focus of this paper, is the stabilization of the Underactuated Mechanical Systems. 
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The present paper continues the development of the DLA with a controller design 

formulation, which satisfies the First Matching Condition (FMC) exactly without introducing 

control law terms that are quadratic in the velocities or approximations. Applying DLA to more 

complicated systems showed the Lyapunov function and its derivative are non-monotonic terms. 

This difficulty was addressed  in [6] where if enough conditions are satisfied,  a monotonic 

standard Lyapunov function depending on the dynamics of the uncertain system can be 

posteriorly constructed.   

A better formulation of the problem addressed in [7] is presented to improve the stability 

criterion. The problem addressed in [8] is presented to achieve better performance, and a relaxed 

nonmonotonic.  

This problem is addressed in [9] and [10] using techniques that solve the matching 

equations, such that the first matching condition is satisfied in terms of the generalized 

coordinates.  Certain restrictions were implemented to develop a nonlinear stabilizing control 

law for the inverted pendulum cart, which improve the performance.   

In this paper certain parameters will be introduced to preserve the proper shape of the 

potential, the positive definiteness of the matrix, and the non-positive rate of change of the 

Lyapunov function. 

To illustrate the formulation, the derivation is performed using the symbolic manipulation 

program Maple and it is simulated in the Matlab/Simulink environment. 

2.    The Lyapunov formulation and the matching conditions  

The derivation of the new controller follows, in many respects, that presented by [2], [3], 

and [4] resulting in three matching conditions.  The solution determines the stabilizing controller.  

Once the solution is found, the parameters involved in the matching equations are selected in 

terms of the stabilization and performance. 

The FMC is used for the determination of the matrix. The goal in solving the FMC is to find 

the matrix that plays a role in both second and third matching conditions, such that the matrix is 

symmetric and positive definite together with the control input.   

The Lyapunov stability theory is the main tool used in the analysis and synthesis of this 

development.  The Lyapunov candidate function is defined in (2).  The control input that satisfies 

the time derivative constraints of the Lyapunov candidate function along the system trajectories 

is designed such that  𝑽̇(𝐪, 𝐪̇) ≤ 0, 𝑽(𝐪, 𝐪̇) decreases to a constant, and KD=KD
T 0. The 

dynamic equations contain of the positive definite inertia matrix M(q)  nn, a matrix    𝐂(𝐪, 𝐪̇) 

 nxn containing the Coriolis and centripetal coefficients, and the vector   G(q)  n consisting 

of forces and/or moments stemming from gradients of conservative fields.  The equations of 

motion are 

( ) ( ) ( ) 







=++

0

τ
qGqqq,CqqM 

                         (1) 

The candidate Lyapunov function is stated as 

                      𝑉(𝐪, 𝐪̇) =
1

2
𝐪̇T𝐊𝐃𝐪̇ + 𝛷(𝐪)        (2) 

 

(q): n →  is a potential function, and KD  nn is a symmetric, positive definite matrix 

defined as 

         𝐊𝐃 = 𝐏(𝐭)𝐌(𝐪)           (3) 
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where P(t)  nn is a matrix chosen such that KD has the stated properties.  Lyapunov’s 

equation can be used to show that all the eigenvalues of P have positive real parts.  This 

important result will be used in the second matching condition. 

The time derivative of the candidate Lyapunov function is computed as 

       𝑉̇ = 𝐪̇T𝐊D𝐪̈ +
1

2
𝐪̇T𝐊̇D𝐪̇ + 𝐪̇T𝛻𝛷(𝐪) = −𝐪̇T𝐊V𝐪̇

   

(4) 

where the matrix KV  nn is symmetric and at least positive semi-definite and (q) is the 

gradient of the potential with respect to the generalized positions.  Owing to the nature of the 

right hand side of (4), LaSalle’s theorem will be necessary to demonstrate asymptotic stability, 

however the right side of (4) is similar to the Hamiltonian formulations cited earlier.  The 

result in (4) shows that 𝑉̇(𝐪, 𝐪̇) is a non-positive function.  Substituting for 𝐪̈ from (1) into (3) 

produces 

V̇ = 𝐪̇T𝐊D𝐌(𝐪)−1 ((−𝐂(𝐪, 𝐪̇))𝐪̇ − 𝐆(𝐪) + 𝛕) 

+
1

2
𝐪̇T𝐊̇D𝐪̇ + 𝐪̇T∇Φ(𝐪d) = −𝐪̇T𝐊v𝐪̇.                                          (5) 

The strategy in solving (5) is through a matching equation approach by breaking (5) into 

three separate equations.  The three matching conditions are developed in the coming sections. 

Examination of (5) shows there are two classes of terms that occur excluding the input.  

The first involves those terms that are pre and post multiplied by the generalized velocities.  

The other terms are pre-multiplied by a generalized velocity and involve a vector function of 

generalized coordinates (gravity terms and potential gradient) and these terms will give rise to 

the third matching condition.  The first class of terms can be further divided into terms that are 

a function of the generalized velocities such as 𝐂(𝐪, 𝐪̇) (these terms are found in the first 

matching condition) and terms that are constant such as Kv (terms comprising the second 

matching condition).   The input vector  will be broken into three parts, one for each matching 

condition.  Following these descriptions, (5) is written as three separate equations or matching 

conditions.  The first matching condition is 

                             𝐪̇T𝐊D𝐌(𝐪)−1 (−𝐂(𝐪, 𝐪̇)𝐪̇ + [
𝐅1

0
]) +

1

2
𝐪̇T𝐊̇D𝐪̇ = 0.                                  (6) 

 

The second matching condition is given by 

                                       𝐪̇T𝐊D𝐌(𝐪)−1 (−𝐂D𝐪̇ + [
𝐅2

0
]) = −𝐪̇T𝐊v𝐪̇.                     (7) 

 

Finally, the third matching condition is provided by 

                                  𝐪̇T𝐊D𝐌(𝐪)−1 (−𝐆(𝐪) + [
𝐅3

0
]) + 𝐪̇T∇Φ(𝐪) = 0.                             (8) 

 

By defining the first matching condition control input as. 

               
1

2
𝐊̇D + 𝐊D𝐌(𝐪)−1 ([

𝐅𝐦𝟏

0
] − 𝐂(𝐪, 𝐪̇)) = 0.                      (9) 

 

where Fm1  mn is a coefficient matrix yet to be determined. Each term in the first matching 

condition is pre and post multiplied by the vector of generalized velocities.  
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The symmetric part of (9) to zero produces 

    𝐊̇D + 𝐊D𝐌(𝐪)−1 ([
𝐅𝐦𝟏

0
] − 𝐂(𝐪, 𝐪̇)) + ([

𝐅𝐦𝟏

0
] − 𝐂(𝐪, 𝐪̇))

T

𝐌(𝐪)−1𝐊D = 0.     (10)  

 

2.1.    The First Matching Condition  

The goal in solving the first matching condition is the determination of both the matrix KD 

such that the matrix is symmetric and positive definite and the control input F1.  Likewise, the 

goal of the second matching condition solution is finding the matrix Kv such that it is symmetric 

and at least positive semi-definite and the control law contribution F2.  The overall goal in 

satisfying the third matching condition is the determination of the potential  and the final 

portion of , namely F3.   

The first strategy for solving KD, symbolically based on the above constraints, is to choose 

the elements of Fm1 and Fmc1 as non-zero in (6) which result is showed in (10). In order to 

satisfy (10), n(n+1)/2 equations can be written to determine the same number of unknowns.   

If KD is constant, then the matrix P shown in (3) becomes a function of q alone as seen by 

                                                         𝐏(𝐪) = 𝐊𝐃𝐌(𝐪)−𝟏.                                 (11) 

where P(q)   is the matrix that will have a significant role in the definition of the main  controller 

characteristics and the potential   It is essential to have a full, non-singular or at least lower 

triangular P(q)  matrix to achieve this because the first m columns of the P(q)  matrix are used 

to determine the Kv  matrix in the Second Matching Condition. 

2.2.     The Second matching condition  

This section will present the solution of the second matching condition.  Let the forcing 

term of (7) be written as 

[
𝐅𝟐

𝟎
] = [

𝐅𝐦𝟐

𝟎
] 𝒒̇                                 (12) 

where Fm2 is a m × n real matrix.  Substituting (12) into (7), removing the pre and post 

multiplication by the generalized velocity vector, and simplifying shows 

           

( ) .vK
0

Fm
qP

2
−=









                                  (13) 

The condition that Kv be symmetric provides n(n-1)/2 linear algebra equations.  In order to 

solve for the matrix Fm2, (13) is multiply by P(q)-1  to get  

                          [
𝑭𝑚2

0
]

1
= −𝐏(𝐪)−1𝐊v                                           (14) 

for which the solution is  

                                      𝐊v = ∑ 𝛼𝑖𝐏i𝐏i
Tm

i=1                     (15) 

 

where the i are constants chosen so that Kv is positive semi-definite and Pi is the ith column of 

P(q).  Note that the matrix on the left side of (14) (part of the control law) is evaluated by 

extraction of the first m rows of the matrix product on the right side of (14).   
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Because Kv needs to be at least positive- semi definite, the eigenvalues of Kv are required 

to be 

                    
( ) .0veig K

                                                        (16) 

2.3.    The Third matching condition  

In order to solve the third matching condition, the first matching equation must be solved, 

because the P(q) matrix is needed.  From (8), the third matching equation is stated as 

    −𝐏(t)𝐆(𝐪) + 𝐏(t) [
𝐅3

0
] + ∇Φ(𝐪) = 0.                            (17) 

The first m equations in (17) are used to determine the control law contribution F3 while 

the last n – m rows of the equation provide linear, first order partial (ordinary) differential 

equations for the potential .   

In taking the time derivative of the candidate Lyapunov function, the potential  is 

assumed to be a function of the generalized positions q alone.  In examining (17), it is seen that 

P(t) appears in the equation leading to the conclusion that  also depends upon P(t).  If KD is 

constant then (11) applies and P is a function of the inverse of the mass matrix, which means 

that it is a function of q alone.  The potential 𝛷(𝒒) is also needed to assure the stability condition 

of the system. The Hessian of the potential denotes the second derivative of the potential with 

respect to the generalized coordinates.  The determinant of the Hessian of the potential 

evaluated at q=0 must be a positive. The necessary condition on H is 

                   
( ) .0Heig

                                     (18) 

The method to solve the third matching equation is based on the matching equations 

developed for stabilization as shown in [2], [3], and [4]. 

3.    The solution of KD 

The equations of motion can be expressed as 

 

                                                  𝐌𝐪̈ + (𝐂)𝐪̇ + 𝐆 = 𝐅1𝐪̇ + 𝐅2 + 𝐅3                   (19) 

 

where the three control law terms have been written in a more compact format.  As before, the 

lower n – m rows of the control law vectors are zero. Rearranging (4) and (10) the first matching 

condition is obtained 

                   ( ) ( )( ) ( )( ) ( ) .0,, 1

1

11

1
=+−+−+

−−
mcmm D

T

DD FKqMqqCFqqCFqMKK 
                   (20) 

The elements of the KD matrix are positive constants and the partial differential equation 

that needs to be solved for the potential is not complicated.   

4.    Inverted pendulum cart (IPC) apparatus 

The control law design method was applied to an inverted pendulum cart system.  The 

system geometry together with the dynamic equations of motion are shown in Figure 1 with 

definitions of the physical parameters.   
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                            Figure 1. Inverted Pendulum Cart System. 

 

 

The values of the physical parameters are l=0.7 m,  g= 9.81 m/s2,  Mc =5 kg,  Mp = 1 kg. 

C1=100, C2=1,  are the constants values for the KD matrix , and  α = 38 is a constant value for 

the KV matrix. 

 

5.    The simulation 

The chosen example could be stabilized by the nonlinear controller.  The KD matrix was 

evaluated through numerical integration of (20).   

The potential 𝛷(x, θ) for the inverted pendulum system is plotted on a positive 

interval for θ, and it shows the concave shape, see Figure 2.  

Figure 3 shows the Pendulum- Cart Positions and velocities.  

 

        

 
 

 

 

 

 

 

 

 

 

 

 

 
        Figure 2. The potential for Inverted Pendulum Cart.                Figure 3. Pendulum- Cart Positions and 

velocities with no control law. 

 
 

 

Figure 4 shows the control law, and Figure 5 shows the Pendulum- Cart Positions and 

velocities when stabilized.  
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        Figure 4: Control law     Figure 5: Pendulum- Cart Positions                                   

                          and velocities   

 

 

Figure 6 shows the P matrix is either positive definite or positive semi-definite, and Figure 

7 shows the elements of P are remaining essentially constant.    

   

                    
                                                   
                                 Figure 6: Determinant of P Matrix               Figure 7: Elements of P Matrix                   

 
 

 

The behavior shown in Figure 8 demonstrates the validity of the Lyapunov candidate 

function. 
                       

 
                

Figure 8: Lyapunov and Time Derivative History 

5. Conclusion 

A solvability of the direct Lyapunov first matching condition in terms of the generalized 

coordinates method for the stabilization of underactuated, inverted pendulum cart has been 
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presented.  The matching method, resulting in three equations, was improved to design the 

nonlinear system controller.  The first matching condition results in PDEs for the positive and 

bounded for all time matrix KD.  Also, the eigenvalues of P(q) all have positive real parts.  In 

this formulation, as was done in the previous one, KD approaches a constant matrix.  In the 

previous formulation of the first matching equation, where several terms were implemented, the 

way in which the KD matrix was made to approach its final form could contribute to the KV 

matrix resulted in one eigenvalue of KV    The present paper resulted in one eigenvalue of KV 

exhibiting a small oscillation when above or below an alpha value of one. 

The second matching condition is formulated and solved in such a way that the KV matrix 

always remains at least positive semi-definite.   

The third matching condition produces n – m linear PDEs for the potential .  The third 

matching condition presents an expanded basin of attraction.  In the example the expanded basin 

of attraction is determined by the choice of constants for KD and KV. 

All the simulation results obtained for the nonlinear systems validate the effective 

controller development in this work. The positive definiteness property of KD, the proper shape 

of the potential, and the behavior of the Lyapunov time derivative were demonstrated. 
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