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Two-wheeled robot self-balancing has gained much interest of researchers due to its nonlinear 

dynamics. This project is aimed to design an Interval Type-2 Fuzzy Logic Controller to control 

a two-wheeled LEGO EV3 robot self-balancing to keep it in the upright position. In this 

project, two-wheeled LEGO EV3 robot is modelled using SimWise 4D software and integrated 

with Simulink. The robot stability performance and output response are observed at the same 

time when the Simulink is executed. System identification is used to get the mathematical 

model of the system in state space based on input and output from SimWise 4D motion to 

compare both results. The state space is used during optimization of IT2FLS using Particle 

Swarm Optimization (PSO). The performances of Interval Type 2 Fuzzy Logic Controller 

(IT2FLC) and optimized IT2FLS are compared. The robustness of IT2FLS is observed during 

disturbance rejection by injecting different direction of 0.8N and 1.0N torque to the robot in 

first 15 seconds. 

1. Introduction

Since fuzzy sets were first established by L. A. Zadeh in 1965 and rapid research on the fuzzy 

theory application, the fuzzy control becomes famous with its features of multi-variables, high 

order, nonlinear, and strong coupling. It performs better in classification and control. A self-

balancing robot is one of the common platforms of research to exemplify system stability, 

controllability, anti-interference, and robustness [1-6]. Fuzzy logic control can reflect the 

human thinking and convert probability theory into mathematical logic. However, it does not 

require a mathematical model for implement the control function.  

The control system of a two-wheeled self-balancing robot has been studied for many 

years. There are various types of control algorithms which always being used in self-

balancing, like LQR, LQG, PID control,  pole placement, adaptive control, fuzzy logic control 

and so on [7-15]. However, there are still some open issues on the efficiency of different types 

of control. The majority controls that are being used in the industry nowadays are more to 

linear control. In [4], the implementation of a pole-placement controller in two-wheeled self-

balancing robot equipped with supporting arms maintains robot upright in range of ±30˚. The 

comparison of PID and LQR controller in [6] also shows the highly unsuitable for 

nonlinearities in PID controller due to overshoots and LQR performs long rise time in self-

balancing the two-wheeled robot.  

In [16], the PSO-based Fuzzy control shows great control ability in maintaining system 

stability. In [17], the Fuzzy PD controller also improves the balance of robot from ±45˚ to 

±10˚. There is a lot of application of FLC in common household devices currently. The 

advantages of using FLC in these applications include automatic compensation for operator 

injected noise in camcorders, making intelligent floor decisions and minimizing travel and 

power consumption [18-20]. There is a big gap between application and theory. In industrial 

operation, most of the operators using linear controllers instead of Type-2 Fuzzy Logic 

Control due to its simple structure and easy implementation. Plus, the Type-2 Fuzzy 
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Controller is quite heavy compared with Fuzzy Logic Controller. However, Type-2 Fuzzy 

Control can provide additional design degrees of freedom in the fuzzy logic system [21-22].  

Fuzzy logic systems have been credited in robotics control and capable provide robust 

control for modelling system that subjected to uncertainties [23]. The flexible set of if-then 

rules in FLC driving force in increasing the popularity of Fuzzy logic control. FLC is able to 

quantify the input signal in a noisy environment and apply smart fit data. However, the general 

fuzzy logic approach is difficult to overcome the uncertainties that exist in a large number of 

the real application with dynamical environments. It is unable to model knowledge adequately 

but Type-2 fuzzy logic can offer a high level of imprecision [24-30]. 

2.    System Model and Parameters  

2.1.    Modelling of a two-wheeled EV3 Lego Robot  

The LEGO EV3 robot is being modelled using SimWise 4D. The parameters, descriptions, 

values, and units are tabulated in Table 1. Gain K1 is the translation kinetic energy, gain K2 is 

the rotation kinetic energy, and U is the potential energy. Assume θ to be the angular position 

of the left and right wheel, ψ to be the tilt angle and φ to be the yaw angle. 

 

 
Figure 1. Inverted two-wheeled pendulum [2], [32] 

 

Table 1. Parameters of Lego Ev3 Robot [18]. 

    m  /L [    ]  Wheel inertia moments 

M 0.610 [kg]  Body weight 

W 0.156 [m]  Body width 

D 0.050 [m]  Body depth 

H 0.250 [m]  Body height 

L H/2 [m]  Distance of the center of 

mass from wheel axle 

    M   /3 [    ]  Body pitch inertia moment 

    0.00001 [    ]  DC motor inertia 

    6.690 [Ω]  DC motor resistance  

    0.468 [Vsec/rad]  DC motor back emf 

constant 

    0.317 [Nm/A]  DC motor torque constant 

n 1   Gear ratio 

    0.0022   Friction coefficient between 

body and DC motor 
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Figure 2. The angular position of left and right wheels. 

 

The initial tilt angle of LEGO EV3 robot (gyro) is zero radian. 

 

Figure 3. The gyro meter of orientation in SimWise 4D. 

 The LEGO EV3 robot is completed by connecting with rigid constraints and the two tyres 

are connected to the robot using revolute motors in order to make sure that they can rotate 

during self-balancing. 

 

 

Figure 4. The complete EV3 robot in SimWise 4D. 

3.    Interval Type-2 Fuzzy Logic Controller (IT2FLC) 

The functional block diagrams for the self-balancing system is shown in Figure 5. It is a 

closed loop controller where the change of output will be fed to input so that the error can be 

corrected automatically to produce the desired output. 

  

 

Figure 5. Functional Block Diagram for self-balancing system. 

 

The reference input of the control system is a constant which is the original tilt angle of LEGO 

EV3 robot in the upright position, zero radians. Three gains are inserted into the controller act 

as amplification of the controller output signals. A pre-defined block is used to represent the 

LEGO EV3 robot in SimWise 4D system. The scope block is used to show the graph of input-

output state response and the To Workspace block is used to save the data of the signal to the 

177



workspace. Type-2 FLS has five components which are fuzzifier, rule base, inference system, 

type-reducer and defuzzifier as shown in Figure 6. 

 

 

Figure 6. General Structure of IT2FLS [25]. 

 The type-2 fuzzy set has fuzzy grades of membership compared to the type-1 fuzzy set 

that is crisp grades of membership. IT2FLS is an extension of T1FLS. Moreover, it has 

additional design degrees of freedom in FLSs. 

 IT2FLS has no single value for membership function but a few of it. It is like blurring 

type-1 membership function. Its membership function ranges over fuzzy sets of type-1. The 

type of reduction (Nie-Tan) is chosen to convert type-2 fuzzy sets to type-1 fuzzy sets. Try 

and error method is used to tune the gain to self-balance the robot.  

 Nie-Tan has the ability to give a closed form expression for IT2FLS output and reduce the 

order of IT2FLS. The Nie-Tan method produced type-1 fuzzy sets output which is the upper 

and lower membership functions of type-2 fuzzy sets output. By this, the x-coordinate of the 

geometry centroid of the footprint of uncertainty can be found to form final system output. 

 The expert knowledge of fuzzifier consisting of a set of fuzzy IF-THEN rules. There are 5 

fuzzy levels which formed 25 rules. 

Table 2. Fuzzy Rules 

 

4.    Particle Swarm Optimization (PSO) 

PSO is a popular nature-inspired metaheuristic optimization algorithm that has emerged as a 

promising algorithm for solving various optimization in various field especially science and 

engineering. There are two script files required for full implementation of the PSO. The first 

file is to define the function and the second file is to develop main PSO program. The PSO is 

easy to implement and fewer parameters adjustment. In PSO, every single solution is a particle 

in the search space. All particles have fitness values that are evaluated by the fitness function 

for optimization. The velocities of these particles direct the flight of the particles. The particles 

fly through the problem space according to the current best particles [22]. 

 PSO is initialized with a set of random particles (solutions) and then searches for the 

optimum solution by updating the generation. In each iteration, each particle is updated based 

on the two best values. The first is the best solution (fitness) achieved so far. The fitness value 

is also stored. This value is called Pbest. The particle swarm optimizer also tracks the best 

value obtained by any particle in the population so far. This best value is a global best and also 
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called as Gbest. When a particle takes part of the population as its topological neighbours, the 

best value is a local best, called Lbest. After finding the two best values, the particle updates 

its velocity and position. Each updating of Pbest and Gbest of the population, the fitness of 

solution is evaluated [30].  

 Rand () is a random number between (0, 1), c1 and c2 are learning factors and also called 

as acceleration factor. Usually, the total summation of c1 and c2 must be equal to 4. The 

parameters of PSO algorithm are considered as follows: 

 
i. Inertial weight (wmax and wmin) : 0.9 to 0.4 
ii. Acceleration factors (c1 and c2)  : 1 and 3. 

iii. Population size, n   : 10 
iv. Maximum iteration (bird_setp)  : 100 

v. Number of Dimensions (dim)  : 5 

vi. Maximum number of runs (runMax) : 5 

 

 The implementation of PSO is used to tune the IT2FLC function. Thus, there are five 

gains are considered in this PSO IT2FLS which three of them are controller gain and the other 

two are IT2FLC function’s gain which represented as standard deviation and mean in order to 

determine the footprint of uncertainty (FOU). These gains are K4 and K5 and added in this 

PSO IT2FLS function only. 

5.    Simulation Results 

The intuitive method is used during gain tuning in functional block diagram for self-balancing 

system. Table 3 showed the gain values of functional block diagram in each comparison for 

Type-1 fuzzy logic and IT2-FLC with PSO. It shows that gain K4 and K5 is not used for 

IT2FLS and only used in PSO IT2FLS. Figure 7 shows corresponding performance in terms of 

tilt angle and torque. 

 
Table 3. Gain Values of Self-Balancing System. 

 

 
 

 
 

Figure 7. Graph of input and output response before and after optimised. 

Gain Value IT2FLS PSO IT2FLS

K1 0.048 0.0457

K2 0.24 0.2435

K3 100 100.1594

K4 / 0.955

K5 / 0.158
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Figure 8. Evaluated fitness graph of solutions. 

Table 4. State Response Before And After Optimised. 

 

 
 

 Figure 8 shows the evaluated fitness of solutions with low dispersion during PSO. The 

zero error is obtained in the converged graph clearly showed the best fit for those solutions.  

The state response pattern of two graphs is same although the system performance is different. 

The PSO IT2FLS has the shortest rise time, peak time and settling time compared with 

IT2FLC systems. TheIT2FLS has longer rise time and settling time compared to optimised 

IT2FLS. Although the overshoot of PSO IT2FLS is higher than no-optimised, it is still in 

acceptable range and its steady state tilt angle achieved is nearer to zero radians. Hence, tuning 

this IT2FLC with optimization algorithms have provided a better result as can be seen in Table 

4. 

 

Figure 9. Comparison IT1FLS and IT2FLS Tilt Angle Output. 

 
Table 5. Comparison between of IT1FLC and IT2FLC. 

 

 
 

IT2FLS PSO IT2FLS

Rise Time, s 3.575 1.625

Peak Time, s 6.796 2.98

Settling Time, s 9.774 6.08

Overshoot, %OS 5.176 8.233

Steady State -4.521E-05 -2.247E-18

Time

Self-Balancing

IT1FLS IT2FLS

Rise Time, s 12.96 11.78

Peak Time, s / /

Settling Time, s 22.46 19.6

Overshoot, %OS / /

Steady State -9.4325E-03 -5.785E-03

Time

Self-Balancing
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 In optimization solver for automatic control, the range of linear algebra problems that 

need to be solved on the same hardware is so varied that it is not possible to assign word-

lengths based on simulation in a practical manner. Since it is impossible for PSO IT2FLS to 

implement in real LEGO EV3 robot. Hence, the comparison of Type-1 Fuzzy Logic System 

and Interval Type-2 Fuzzy Logic System is shown in Figure 9 and the respective performance 

is tabulated in Table 5. Peak time and overshoot are not appear in this tilt angle performance. 

The steady state of IT2FLS is more approximate to zero. The state response showed clearly 

that IT2FLS achieve steady state faster than IT1FLS. Hence, IT2FLS can self-balance the 

robot faster in an upright position. 

6.    Conclusion 

In the nutshell, the objective and scope of the project are achieved and the results show that 

LEGO EV3 robot can self-balancing successfully using IT2FLC. The results show the value of 

steady state that is approximately zero which proved the efficiency of intelligent control in the 

self-balancing field. The Particle Swarm Optimization (PSO) also being proven is able to 

optimised Interval Type-2 Fuzzy Logic Controller (IT2FLS) to get a better performance in 

self-balancing. For disturbance rejection, Interval Type-2 Fuzzy Logic Controller (IT2FLS) 

gives good performance in state response. The comparison of the results also proved the 

robustness of Interval Type-2 Fuzzy Logic Controller (IT2FLS). For future recommendation, 

the system can be implemented in practical manner like EV3 robot hardware to investigate its 

performance. 
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