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Any autonomous agent deployed with some representation of rules to follow will face scenarios
where the applicability of its given rules are not clear. In such scenarios, a malicious agent might

successfully argue that some action which clearly goes against the spirit of the rules is allowed,
under a strict interpretation of the rules. We argue that the task of finding such actions, which we

call the loophole task, must be solved to some degree by an autonomous ethical agent, and thus is

important for robot ethical standards. Currently, no artificially intelligent system comes close to
solving the loophole task. We define this task, by characterizing it as exploiting a misalignment

between informal and formal representational systems, and discuss our preliminary work towards
creating an automated reasoner capable of solving it.
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1. Introduction: Why Loopholes Matter to Ethics

Autonomous moral agents are typically deployed with some formal representation of the

obligations constraining their allowed actions. These representations might be formulae in

some highly formal language expressing obligations,1–3 statutes of local, national, or inter-

national law written in legalistic language with varying levels of formality,4–7 or even highly

informal dictates expressed in natural language (e.g., “be good to humans”). It is difficult to

imagine that any representational system, no matter how well-defined, can ever completely

avoid the use of informal concepts (and complete rigidity of such rules, especially in the

moral domain, may not be preferable anyway8,9). The problem is, these informal concepts

introduce the possibility of loopholes—arguments that exploit the impreciseness of informal

concepts in order to make the case that some formalization classifies some case in a way

that goes against the intention of the formalization.

For example, Minnesota’s 2007 “Freedom to Breathe Act” amended existing statutes

so that tobacco products could no longer be smoked in public places. But an exception

remained for “smoking by actors and actresses as part of a theatrical performance conducted

in compliance with section 366.01.”a The referenced section, however, did not define ‘actor’,

nor ‘theatrical performance.’ Unsurprisingly, bars around the state soon organized “theater

nights,” in which customers were invited to attend and smoke, participating in imaginative,

sometimes avant-garde performance pieces whose details varied from bar to bar.

These creative maneuvers did not stand up to court challenges.b Nevertheless, Min-

nesota’s incompletely formalized statutes somehow opened themselves up to such loopholes,

∗This material is based upon work supported by the Air Force Office of Scientific Research under award
number FA9550-16-1-0308. Any opinions, finding, and conclusions or recommendations expressed in this

material are those of the authors and do not necessarily reflect the views of the United States Air Force.
aCh. 144, Sec. 4167, Subd. 9, https://www.revisor.mn.gov/statutes/?id=144.4167
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and it is important to understand why—especially for applications where such flexible in-

terpretations can have serious consequences, as with autonomous moral robots. Perhaps

most relevant to the ICRES community: We will, at some point, need to give autonomous

robots a set of instructions formalizing allowed actions, whether in the form of laws, codes

of ethics, or contracts encoded as machine code.10 Is it then the case that no matter what,

any formalization of obligations will lead to scenarios where the rules given are subject to

loopholes that can be exploited?

We argue that the prognosis for formal representational systems is not hopeless. Although

loopholes may be possible in every possible formalization, the lesson for AI researchers and

policymakers is that more effort needs to be placed into (1) giving our autonomous reasoners

the ability to reason about the rules they are given, and (2) finding ways to anticipate and

close loopholes. Our lab is working on (1) through our project on active formalization,11 but

in this paper we will restrict our focus to our efforts addressing (2). As we will describe in

Section 3, we believe it is possible to develop automated reasoning tools to assist in closing

loopholes for any given formalization, by developing artificial reasoning systems capable of

carrying out the loophole task, which we can attempt to define as follows:

Definition 1.1 (The Loophole Task). Given a formal ruleset F ∈ R∗
F , meant to ban

informal concept I ∈ R∗
I , the Loophole Task is to find: (i) a case C that satisfies I, and (ii)

informal arguments that C does not satisfy F.

Here, a ruleset refers to any partially formal classification mechanism. In the Minnesota

smoking ban example, the stated purpose of the statute was to “protect employees and the

general public from the hazards of secondhand smoke”c, a phrase which uses the informal

and difficult-to-define concepts ‘protect’ and ‘hazards.’ We might therefore describe the

“theater nights” loophole as exploiting the misalignment between the formal ruleset (as

defined by the statute) and the informal concept that the ruleset was designed to describe

and ban.

2. Formalizing Loopholes

In this section, we will show how the loophole task can be thought of in terms of mixed-

formality representational systems, thus leading to a more precise way of thinking about the

Loophole Task. Definition 1.1 places the ruleset F and informal concept I as members of

representational spaces R∗
F and R∗

I , respectively. Our approach to the Loophole Task is to

characterize it as exploiting a misalignment between elements of representational systems

that are at different levels of formality—where RF is a representational system which is

more formal than RI . The terminology we use for representational objects comes from

Ref. 11, which distinguishes between representational systems, representational spaces, and

representations. Specifically:

Definition 2.1 (Representational System (RS)). A representational system R is a tu-

ple (M,A), where:

• M - A finite set of typed elements, called the members. Each member consists of a

type and, optionally, a value. Types can either be primitive types (such as integer,

boolean, string, etc.) or another representational system.

• A - A finite set of methods. Each method consists of a unique symbol and a method

definition. If the method definition is empty, then the method is called an atomic

method of the class.

chttps://www.revisor.mn.gov/statutes/?id=144.412
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Definition 2.2 (Representation). A representation R is a tuple (Rinst, sem), where:

• Rinst is an instantiated RS, which is an RS where all members are assigned values.

• sem is a ”semiotic function” mapping the members and methods of R to the things

they represent.

An RS does not by itself represent, it only defines a space of possible representations. This

allows us to separate the thing used to do the representing from the thing actually doing

the representing, by making an analogy to object-oriented programming. Roughly: A class

definition is to an object as a representational system is to a representation. For this reason,

the above definitions are referred to as the ”OO-inspired framework”.11

For some representational system R, the set of all possible representations it can produce

(all possible ways to instantiate the class × all possible semiotic functions) is written R∗,

called R’s “representational space”. For convenience we writeR ∈ R∗ when a representation

R consists of an Rinst and sem in the space defined by RS R.

2.1. Interpreting Methods

The OO-inspired framework allows us to clearly distinguish between many concepts that are

often conflated in AI and AI-related fields: representations vs. representational systems vs.

representational spaces, things members of a class can do vs. their properties, and so on. We

can also compare representations at different levels of formality—but because it is outside

the scope of this paper to mount a full defense of our view of formality,d it will suffice for

now to define it as a partial ordering between representational systems, where RF ≥LoF RI

if RS RF is more formal than RS RI . We then introduce the following:

Definition 2.3 (Interpreting Method). An interpreting method, in representation R ∈
R∗, is a method which (1) takes some description of a case C and evidence that C is an

instance of symbol s; (2) returns some measure of confidence that C is an instance of s;

and (3) is meant to serve as a way to recognize instances of symbol s, as specified by R’s

semiotic function.

Note that interpreting methods are not necessarily referentially transparent, particularly

in informal RSes. For example, we might represent an individual human being as having

some idea of how to recognize cats, but the algorithm-level description of how his inner mind

works to determine whether or not a cat is present may not be available to him. Furthermore,

note that the format of the case C and the evidence for C is specified by the RS to which

the interpreting method belongs: a highly formal RS might require well-formed proofs as

evidence, whereas a more informal RS might accept some combination of non-deductive

arguments—these are called interpretive arguments, and come in a variety of forms, many

of which have been catalogued by Refs. 12–14.

When an interpreting method always returns either ‘True’ or ‘False,’ we call it a boolean

interpreting method. We can also say that a representation recognizes symbol s through IM

if it has a boolean interpreting method IM meant to recognize s. Finally, with all of these

definitions in place, we can precisely state what we mean when we say that reasoners capable

of solving the loophole task exploit the misalignment between RSes of differing levels of

formality. First, observe that because of the way we have defined interpreting methods, it is

entirely possible that two interpreting methods from different representations may recognize

the same symbol, but fail to produce the same outputs on all possible inputs.

dWe suspect that most commonly accepted senses of what it means for one representational system to be
more formal than another can be expressed using the OO-inspired framework; proving this is a current
project of our lab.
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Now imagine that you are a lawmaker, hoping to ban some activity of which you only

have an informal conceptual understanding. Your goal is to formalize this activity, in order

to describe it in law. More precisely, let us assume that (1) the formal representation F ∈ R∗
F

is supposed to capture an informal representation I ∈ R∗
I (i.e., the thing you want to ban),

(2) R∗
F ≥LoF R∗

I , and (3) both F and I recognize symbol s through boolean interpreting

methods F .S and I.S, respectively. Then, we can more precisely define the Loophole Task

as finding cases C where:

Definition 2.4 (Overshooting/Undershooting). F .S overshoots I.S on C when F .S
returns True for case C, but I.S returns False. F .S undershoots I.S on C when F .S
returns False for case C, but I.S returns True.

3. A System for Finding Loopholes

EatsFish(x)∧Meows(x) ⇒ IsCat(x)

EatsCarp(john)∧
CanMakeAllAnimalSounds(john)

EatsCarp(john)∧Meows(john)

EatsCarp(x)⇒EatsFish(x)

CanMakeAllAnimalSounds(x) ⇒
Meows(x)

EatsCatFood(mittens)∧Meows(mittens)

EatsCatFood(mittens)∧MeowsQuietly(mittens)

EatsCatFood(x)⇒
EatsFish(x)

MeowsQuietly(x)⇒
Meows(x)

Fig. 1. A simple warrant-reduction graph, which reduces a warrant (top) to specific cases (bottom) using
reduction operators (in blue)

The rich definitions laid out in the previous section reveal how many pieces must fit

together for a loophole to be found. A reasoner must essentially be able to produce a case,

along with evidence across what might be RSes of completely different levels of formality. In

the “Freedom to Breathe Act” example that opened this paper, the creative entrepreneur

who first devised ‘theater nights’ must have been able to reason that theater nights would not

fall under the legal definition using plausible legal reasoning, and simultaneously that theater

nights does fall under the informal definition of “smoking-allowed nights that customers

would want to attend”. This ability to reason on two different levels simultaneously is far

beyond the ability of any current AI—arguably, reasoning at even one of those two levels is

already past the state-of-the-art.

All of this strongly suggests that solving and understanding the Loophole Task is not

only worthwhile to the future of legal and ethical reasoning, but a highly non-trivial goal for

artificial reasoning, and AI in general. The idea is that solving the Loophole Task can result

in a tool to aid a formalization designer (e.g. a legislator, or a policy writer for autonomous

moral agents, or a creator of a smart contract) by identifying possible loopholes that should

be addressed before the formalization is deployed. Accordingly, our AMHR (Advancing

Machine and Human Reasoning) lab at the University of South Florida has begun work on

a system we believe will be able to make a dent in the problem, and the remainder of this

paper will describe this work. However, we must temper expectations: at the time of this

writing, this work is very preliminary.

Some loopholes can be found by exploiting the nature of open-textured concepts15—

concepts whose extension is either underspecified, or are “highly dependent on context and

human intentions”.16 There has been a wealth of work on solving the problem of open-
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textured concepts by combining rule-based and case-based reasoning.16–19 But these, inso-

far as they can be classified as arguments from analogy or precedent, are only one type

of interpretive argument (i.e., arguments that something should be interpreted a certain

way12).

Our lab’s approach draws from a modernization we are building of the warrant-reduction

graphs (WRGs) described by Branting,16 in order to automatically construct interpretive

arguments that can be considered plausible loopholes to some formalization. Each WRG is

essentially a large interpretive argument, consisting of many smaller interpretive arguments.

If those interpretive arguments can be carefully selected according to the modes of evidence

accepted by some interpreting method, then we essentially have a general-purpose tool to

tackle the Loophole Task using the insights described in Section 2.

A WRG works by starting with a warrant, of the form (c1 ∧ ... ∧ cn) → P . A case is a

conjunction of facts f1∧...∧fm. The warrant graph determines whether the case is applicable

to the warrant (and thus can be assigned the label P ) by the use of reduction operators.

For example, assume we are given the warrant “cats eat fish and meow,” and the agent

named ‘Mittens’ who has two features: He meows quietly, and eats cat food. One might be

able to determine that the warrant applies to Mittens with the reduction operators “cat

food contains fish” and “meowing quietly is meowing.” A completed WRG constitutes a

type of hybrid interpretive argument, consisting of multiple smaller interpretive arguments

(depending on the sources of the reduction operators). This is illustrated in Figure 1, where

the WRG is pictured as a tree, and each path from the root node to a leaf is an interpretive

argument. However, Figure 1 also shows that this warrant will also allow one to argue that

a human being who eats carp and can make animal sounds is also a cat.

We intend to explore answers to the following question: How far can we push the ca-

pabilities of WRGs as interpretive argument generators, drawing from partially structured

datasets of formal and informal knowledge? Branting’s WRGs relied on a manually collected

corpus consisting of three types of data: warrants, cases, and reduction operators. Although

his work achieved impressive results,16 its use of small datasets limit its applicability (and

its ability to generate interpretive arguments for the loophole task). Our proposed system

to modernize WRGs in order to solve the Loophole Task is diagrammed in Figure 2. This

project involves drawing from multiple semantic web databases20–24 and recent advances in

NLP and information extraction.25–28 Both of these fields have seen major advances in the

almost-20 years since Branting’s publication.

Clearly there is much to be done. We also plan to generalize the way warrants and

reduction operators are used in WRGs. As it stands they are currently horn clauses that do

not allow negations, weighting individual conditions, modal operators, and so on.
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