
UNDERSTANDING HOW PROXIMITY TO A ROBOT AFFECTS 

PERCEIVED WORKLOAD  

TEEGAN L. JOHNSON, SARAH R. FLETCHER, AND ROLAND KUTKA 

 

Industrial Psychology and Human Factors Group, School of Aerospace, Transport, and 

Manufacturing, Cranfield University, United Kingdom  

Human-robot collaboration is fast becoming a preferable alternative to traditional manual 

assembly work in manufacturing. Large industrial robots and small force-limited ‘co-bots’ 

can now be deployed with sophisticated safety systems to enable human skills and robot 

skills to be employed most effectively. However, an understanding of the affect this 

introduction may have on cognitive workload is required prior to their full installation into 

industry. This paper describes an investigation which explored the effect of working in 

proximity to a robot on people’s workload. The NASA- Task Load Index (NASA-TLX) 

was used to assess subjective workload for participants after completing trials. Results 

showed centralised workload levels which were higher for the assembly activity requiring 

greater fine motor control. 

1.   Introduction 

Within manufacturing, the expertise of operators is required for intricate and 

skilled craft based tasks. Their skill is valued and essential to ensuring products 

are produced to high standards. However, the nature of manufacturing work can 

place operators at risk of physical and/or psychological stress, as seen in reports 

release from the Health and Safety Executive [1]. Physical harm can result from 

lifting or carrying heavy items [2], caring out tasks in awkward postures [3] and 

completing repetitive tasks [4]. A solution to this would be to fully automate a 

task and remove operators completely from the risk of physical harm. However, 

this is not possible as automation and robot capabilities cannot yet replicate many 

essential skills completed by humans [5, 6]. Particularly craft-based tasks seen 

throughout manufacturing which often require fine motor control, flexibility, and 

the ability to adapt to new or unforeseen circumstances [7].   

An increasingly proposed solution is to introduce collaborative robotic 

systems where the human operator and the robot work together or alongside one 

another. The robot would complete aspects of a task that may harm the operator 

or non-value added activities (retrieving and staging tools, holding parts), while 

the worker completes more skilled tasks [8, 9]. Research has found positive 
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outcomes for Human-robot collaboration (HRC) systems: Unhelkar and 

colleagues [9] found improved production efficiency with the introduction of a 

mobile robot assistant that delivered tools and materials to operators. Tan et al. 

[8] developed a multimodal information support system to support a HRC task. 

They found that the new system produced higher productivity levels with fewer 

assembly errors compared to conventional manual assembly. However, the 

interactions and proximity to the robot led to negative impacts on subjective 

comfort and cognitive workload. These studies demonstrate that performance 

benefits can be achieved by shop floor HRC. However, psychological impacts on 

operators have to be assessed and addressed prior to successful implementation. 

1.1.   The Importance of Psychological Factors: Workload 

With the introduction of new technology, it is important to understand the costs 

that the technology will have on those working with it. Particularly in the 

transitional stage where the technology is being developed and introduced into the 

working environment. There are well documented instances of technology 

acceptance being hindered because operators have not been considered prior to 

installation [5, 10]. With the introduction of automation, it was expected that high 

workload levels for operators would decrease. However, the opposite was found, 

with workload levels increasing for operators [11].   

If robots are to be introduced partially to reduce the physical cost of 

manufacturing for operators, then the psychological cost needs to be understood 

and minimized where feasible. One area requiring focus is that of workload. 

Workload has to do the cognitive processes and relationships between task 

demands, the psychological resources and effort available to meet these task 

demands [12].  Although there are multiple processing resources, each has a 

limited capacity. Exposure and compensation for high levels of workload, 

compounded by stress resulting from organisational pressure, the introduction of 

new technology, or high additional attention demand, can have short term 

(performance deterioration [13] and longer term chronic effects on individuals 

[13, 14].  

Arai and colleagues [15] found strain for human operators who did not have 

previous knowledge of the robots movement. This strain decreased when they 

were notified of motion beforehand. Interactions and proximity to robots has 

additionally led to negative impacts on subjective comfort and cognitive workload 

[8]. Together, studies such as these demonstrate that mental strain is seen with 

HRC will need to be fully understood to ensure effective human-robot interactions 

and seamless collaboration.  
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Once the effect of HRC on workload has been understood, Organisations 

can be advised on best practice implementation methods. Therefore, this study 

aims to identify the effect of working in proximity to a medium sized industrial 

robot on workload. 

2.   Method 

2.1.   Ethics 

This research was approved by the Cranfield University Research Ethics 

Committee, and conducted in accordance with the Cranfield Research Integrity 

Policy, the British Psychological Society’s Code of Human Research Ethics, and 

the General Data Protection Regulation 2018.  

2.2.   Participants 

12 participants, 8 male and 4 female aged between 21 to 46 years (mean: 33.1, 

SD: 8.8), participated in the study and were recruited from the staff and students 

from Cranfield University using random snowball sampling.  

 

 
Figure 1. Experimental Trial Set-up (Numbers 1-3: Placement of LED Lights, Number 4: Pipe Start 

Point, Number 5: Pipe End Point, Number 6: Assembly Workbench) 

2.3.   Design 

A within-subjects experimental design was used to investigate the effect of robot 

supervision (independent variables) on workload (dependent variable). Robot 

supervision was manipulated with the use of a light system and forced attention. 
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3 light-emitting diodes (LED) (Q-SERIES, APEM), were placed on 3 segments 

of an NM45 Comau robot (Comau SpA): 1 at the top of the robot end effector, 1 

on the shoulder, and one on the base (Figure 1: 1-3). To force the focus of attention 

participants were directed to focus their attention on the robot, the manual task, 

or they could choose where to focus their attention. The two conditions were 

counterbalanced to avoid a learning effects or association of light with the robot 

position [16]. All participants completed two assembly tasks (one required greater 

fine motor control and the second less fine motor control) (Figure 2) and reacted 

to the light sources by pressing a button placed on the table. Workload was 

measured after each trial using a NASA- TLX questionnaire [17].  

2.4.   Apparatus, Laboratory Set up, and Materials 

Figure 1 shows the laboratory set up. A Comau NM 45 robot arm was used to 

complete a simple pick up and place task using 3 pipes. The pipes were moved 

from a table directly in front of the robot (Figure 1: 4) to a table to the side of it 

and next to the participant (Figure 1: 5).  

As can be seen in Figure 1 the workbench that the participants completed the 

assembly on was placed in front of the robot cell (Figure 1: 6). A container for 

completed assemblies and a button to register and turn off the lights were placed 

on the table. The button and lights were connected through an Allen-Bradley 

1732E ArmorBlock EtherNet/IP I/O Block (Rockwell Automation, Inc) to a 

SoftPLC program (SoftPLC Corporation) to record the reaction times.  The nuts, 

bolts, and washers were placed in separate piles on the table to allow for easy 

acquisition.  

Figure A presents the two assemblies which included sets of nuts, bolts, and 

washers: a larger set (Task A), and a smaller set (Task B). The smaller set required 

greater dexterity, fine motor control, and precision, therefore it is expected greater 

levels of workload would be required.  

 

 
Figure 2. Task A and Task B 

The NASA- Task Load Index [17] was administered to assess workload for 

each trial. The NASA-TLX provides an overall workload measure that has been 

found to have good inter-rater reliability and sensitivity to variabilities resulting 
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from the weighting scheme [18]. Each time the participants completed the 

NASA-TLX they were provided with the rating scale definitions and completed 

the weightings before rating their subjective workload.  

2.5.   Procedure  

Prior to participating in the experiment participants were briefed regarding their 

right to withdraw, confidentially and anonymity. Their consent was obtained 

along with their demographic information on a consent form. Participants were 

given a brief overview of the experiment and what would be expected of them 

before they were led into the laboratory area.  

The participants were asked to stand side on to the robot (robot on the left 

side of the participant), and informed of the robots safety features. A light curtain 

was used to stop the robot if the curtain was broken by intrusion. The participant 

were asked to let the researcher know if they felt uncomfortable.  

Instructions were provided on how to complete each assembly task and the 

final state, as seen in Figure 2. Participants were then asked to complete a pre-task 

assembly; this involved the completion of five assemblies for each task: A and B. 

Participants were then familiarised with the monitoring task, this involved each 

of the LEDs on the robot lighting up turning them off by pressing the button 

attached to the table. To avoid an association of the occurrence of a light signal 

with a robot state, the lights always turned on when the robot was moving. 

The participants then completed six trials. At the beginning of each trial, the 

participant was told which Task (A or B) they should perform and where they 

should focus their attention for the task: on the robot, the manual assembly or their 

choice. Table 2 provides the details of the conditions for each task. The 

participants were then asked to complete as many assemblies as possible until 

they were told to stop. Each task was 90 seconds long. During the task each LED 

would turn on once. After each task the participant was asked to complete the 

NASA- TLX [17].  

 
Table 2. Conditions Completed In Each Trial 

 
Trial Task Focus 

1 A Manual 

2 A Visual 
3 A Participant Choice 

4 B Manual 

5 B Visual 
6 B Participant Choice 
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3.   Results 

This study looked to identify the effect of working in proximity to a robot on 

workload, to achieve this subjective responses to the NASA-TLX were recorded. 

In order to produce the overall scores presented in Table 3, the mean weighted 

overall scores for each condition were calculated. Descriptive statistics are 

presented because the sample size precluded the results from statistical analysis.  

All workload scores fall centrally showing a good level of workload. The 

lowest mean overall workload score was found for Trial 3. This involved the 

easier task and the greatest autonomy of focus. The highest mean overall workload 

score was found for Trial 6, where participants completed the more complex Task 

B which required greater dexterity, within this Trial participants were able to 

choose where they placed their attention.  

 
Table 3. Means and Standard Deviations of Overall Workload for 

Each Trial 

 
 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 

Mean 
(SD) 

58.79 
(11.2) 

62.72 
(12.04) 

54.69 
(17.5) 

64.23 
(11.6) 

60.95 
(11.85) 

66.05 
(11.13) 

 

When looking at the differences in mean scores between the Trials, it can be 

seen that two of the three Task A mean results were lower than their comparative 

Task B conditions: Trial 1 and 3 compared to Trial 4 and 6. Whereas Trial 5 (Task 

B, Visual Priority) had a lower overall workload score, compared to Trial 2 (Task 

A, Visual Priority). This is unexpected because Task B required greater dexterity 

and therefore it was expected that greater workload scores would be seen. 

4.   Discussion and Conclusions  

The mean Overall NASA-TLX scores showed that two of the Task A Trials (1 

and 3) had comparatively lower scores than their Task B counterparts (Trial 4 and 

6). Therefore, indicating that Task B was subjectively more difficult to complete 

that Task A. This suggests that for the manual priority and the attention optional 

conditions, Task B required more resources to complete the trial. This was 

expected due to the greater dexterity and fine motor control required for Task B. 

However, this was not the case for the two Visual Priority Conditions (2 and 5), 

where the lower complexity task (Trial 2) had higher Overall scores than the high 

complexity task (5). A reason for this difference in the Visual priority conditions 

may be due to the finish positions for the nuts in each condition. Task B required 

the participants to run the nut to the end of the bolt, which could be complete via 
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tactile feedback and consequently did not require visual attention. Whereas, the 

finished position for Task A required the top of the nut to be level with the top of 

the bolt. Therefore, this may have required visual confirmation that the nut was in 

the correct position, and would have removed focus from the robot and the LED 

lights, thereby, increasing the workload scores. 

The trials within this experiment were intentionally simplified compared to 

those that may be observed within a manufacturing environment. Within 

manufacturing operators may be expected to not only press a button when they 

see a light signal but also make a decision and react according to the type of signal 

presented. Additional factors such as Organisational demands and environmental 

factors that may increase workload were controlled for within this study. 

Therefore, although the workload levels were centralized in this study it is likely 

that they would be higher for a more complex task that includes collaboration with 

a robot in a manufacturing environment. Thus, this study provides support for the 

research that has found that working with robots can have negative impacts on 

subjective cognitive workload [8], and highlights the importance of understanding 

this affect. Further work is required to identify the effect of more complex tasks 

and how working collaboratively affects workload, particularly with larger 

payload robots.  

Future work will need conduct this experiment using a larger sample size to 

enable statistical analysis and identify the reliability and validity of these results. 

Additionally, the assessment of human robot collaboration within manufacturing 

and industry should be conducted to understand the other affects that interaction 

can have on an operator, including potential advantages. This may include looking 

at whether HRC can reduce the physical cost to operators and decrease non-value 

added activities [8, 9]. Can human robot collaborative systems be introduced to 

reduce the length of time operators spend working in confined conditions because 

the robot can work as an additional arm to complete tasks or to provide tools in 

time? Or reduce the length of time participants spend working in awkward 

postures that with time can contribute to musculoskeletal disorders?   

This study is a first step in understanding the effect of working in proximity 

to a robot. The intention for this is to advise organisations how best to introduce 

collaborative robots on to a shop floor, as well as the affect the robot will have on 

the operator, and the types of adjustments that will need to be made. Therefore, 

avoiding a repeat of previous mistakes seen with the introduction of automation 

[11].  
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