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In this study, an optimization method of feedback control inputs for a posture control of a
six-legged robot was developed. The authors had proposed a method to control using an
optimum servo system as a posture control method of a six-legged robot. As a problem of
this method, because the feedback (FB) gain was switched at the time of switching the
swing leg, the control inputs becomes discontinuous and there was a problem that the
posture variation increases. After that, FB inputs of the thigh link obtained by optimum
servo system were optimized. Then, we design a control system that suppressed the posture
variation that occurs during swing leg switching. The effectiveness of the proposed control
method was confirmed using a 3D model of a six-legged robot.
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1. Introduction

Multi-legged robots can operate under extreme conditions where it is difficult for
humans to work. Walking robots are considered to be active on uneven terrain,
and posture control is important for walking. In terms of posture control, there are
studies that examined the subject from the perspective of control methods that
consider robot dynamics [1][2]. In one such study [2], the authors used a six-
legged robot with a leg mechanism proposed by Hirose et al. [3] to investigate a
posture control method. The body height, pitching angle, and rolling angle were
controlled by the thigh link during walking with support legs, and a 3D simulation
was used to demonstrate the method's effectiveness. As a problem of this method,
because the feedback (FB) gain is switched at the time of switching the swing leg,
the control inputs becomes discontinuous and there is a problem that the posture
variation increases. In this study, we construct an optimal servo system using a
mathematical model considering the dynamics of the thigh link proposed by the
authors. Moreover, FB inputs of the thigh link obtained by optimum servo system
are optimized. Then, we design a control system that reduces the posture variation
that occurs during swing leg switching. The effectiveness of the proposed control
method is confirmed using a 3D model of a six-legged robot.




2. Six-Legged Robot

Figure 1 shows the six-legged robot used in this study. Each leg of the six-legged
robot consists of three joints, a rotating part, a thigh part, and a shank part. Table
1 shows the dimensions of the six-legged robot.

Table 1 Robot dimensions

Length of

Height 500 mm Thigh 168 mm
Length of
Length 666 mm Shank 312 mm

Width 710 mm
Moment of 1.966

Inertia I, kgm

Weight 249 kg

Fig. 1 3D CAD model of a 6-legged robot

3. Walking Planning

The effectiveness of the proposed control method is verified by the walking
pattern of five support legs and one swinging leg. Walking period is 9 sec. Figure
2 shows Leg number and Figure 3 shows walking pattern.

[ Supporting Phase

1 O\ ‘ /O I [] Swing Phase

(1) B (xp32) I
II
m OQ—— I—»x —Qwv
C.G
(533) () TV
v
v O/ \OVI 0.0 3.0 6.0 9.0
(x5y5) (x6Y6) Time[s]
Fig.2 Leg number and position Fig.3 Walking pattern

4. Posture Control Method [4]

4.1. Mathematical Model of the Thigh Link

The thigh links are driven by the DC motor in this study, and the DC motor is
controlled by the current. The equilibrium equation of the torque becomes the next
equation for the thigh link shown in Figure 4.
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4.2. Mathematical Model from the Input of the Thigh Link to the
Posture of the Body

The force F; in the perpendicular direction of the supporting leg is given by the
following equation:
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and the force in the perpendicular direction posture control
of the supporting leg

Moreover, the height, and the pitching and rolling angles of the body are
controlled by controlling the force in the vertical direction of the support leg. The
motion equations of the force and the moment equilibrium in the vertical direction
and the pitching and rolling axes in the case of support by six legs are given by
Eq. (3) [2][4]. Fig.5 shows the controlling parameters of the body posture.

MZ=F1+F2+F3+F4+F5+F6_Mg
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Here, it should be noted that the thigh link range of movement used in this study
is —30° to +30°, 8,; is linearized at zero degrees. Substituting Eq. (1) and (2) for
Eq.(3), and, by defining the 18" order state value x = [X11,X12,""", X¢1, X2,
Z, Gp, 0,2, Gp, Gr] which consist of the state values of each thigh link, pitching

and rolling angles, the height of the body and their velocity, the following state
equation is obtained. In Eq.(4), explanations of 4, B, C,d and f are omitted.

x(t) = Ax(t) + Bu(t) +dg + f (4-a)
y(t) = Cx(t) (4-b)



4.3. Posture Control Method

The servo system that the system shown by Eq. (4) follows to the desired value
is designed.

{ z(t) =r(t) — Cx(t) )
x(t) = Ax(t) + Bu(t) +dg + f
Equation (5) is described in equation form as follows:

Xg(t) = Agxg + Bgu +dgg + fy + egr (6)

The control input to the actuator driving the thigh link is obtained to minimize the
following equitation.

J = 1y (% (0T Qg (®) + u(®)TRu(®) ) dt (7)

Here, Q(n X n) and R(m X m) are the weighting matrix given by the design
specification, and Q = 0,R > 0. The control input uj to minimize Equation (7)
is shown as following:

uy = —R7'B] Px, 8)
Here, P(n X n) is the solution of the following Ricatti equation.
PA, +ASP — PB,R™'BIP +Q = 0 ©)

The feature of the proposed control method is that angles of the thigh links
controlling the body posture are estimated by the detection of the pitching, rolling
and the height of the body. In this study, in order to examine the walking pattern
of the five support legs, six sets of FB controller are switched and applied each
time the swing leg changes. Therefore, there is a case that the inputs of the support
legs greatly change at the moment when the control system switches.

5. Optimization of Control Input

In this chapter, we consider a method to further optimize the control inputs
obtained by the optimum servo system designed in Chapter 4. An evaluation
function is necessary for optimization. Here, we consider the relation between
vertical forces generated by the FB inputs obtained in Chapter 4 and the ideal
forces in the support legs. We consider the squares of the difference between the
ideal force, ideal moments (F",M",,M",) and the actual force, actual moments
(F,M,M,), and the weight values (ar,a.,a,,0_7) are set. Then, the evaluation
function is set as follows:
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Equation (10) is an evaluation function. The outputs are the forces in the vertical
direction of the support legs. The inputs are constructed by the three components,
first one is the body force in the vertical direction and second and third one are
the rotational moments in the x- and y-axis. The first term on the right side of the
Eq. (10) is the error sum of squares with respect to the force in the z-axis direction,
and the second term and the third term on the right side are error sums of squares
with respect to the moment about the x-axis and y-axis. The fourth term on the
right side is the error sum of squares with respect to the average generating force
of all the actuators and the generated force of each actuator. In this study, to
minimize the value of J, we use “fminsearch” function which is a solver of
MATLAB 's Optimization Toolbox. This solver uses the Nelder-Mead algorithm
[5], which searches for function minimization without using a derivative function.
The ideal force and moments (F",M",,M",) expressed by Eq.(10) are defined by
following equations.

F* = Mpeight * (zr — 2) — Cheight * 2 + M (11-a)
M, = _Mpitch * Hp - Cpitch * gp (11-b)
M*y = —=Myoy * 0 — Croy * ér (11-¢c)

Mheights Mpitch, Mroll, Cheights Cpitch, Cront are the virtual spring constants and the virtual
damping coefficients about the position of the z-axis, the roll angle and pitch angle.
7,18 the target value of the body in z-axis.

Figure 6 shows the block diagram with the optimization part shown in this chapter
added to the optimum servo system shown in Chapter 4. The control input u of
the support legs obtained by the optimum servo system is corrected to u* by the
optimization method and it is used as the control inputs of the thigh links.
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Fig.6 Block diagram of optimal servo with optimization

6. 3D Simulation

The 3D simulation results are shown in Figure 7. Since the Nelder-Mead method
is an iteration method, we performed a simulation with the maximum iteration
number as 200 in this study. Q = diag(103,103,103,0,---,0) , R =
diag(1,1,1) in Eq.(7). Also, (ar,axay,0_7) in Eq.(10) were set to (1, 1, 1, 1).
(Meightn Mpm, M) are (103, 103, 103) in Eq.(ll), (qleighto ch, Gon) are (1013
10%, 10Y). These parameters were determined by trial and error. Fig.7 (a) is time



response of the height of the body, Fig.7 (b) is the pitching angle, Fig.7 (c) is the
rolling angle, respectively. In the figure, the red solid line and the green dash-and-
dotted line show the cases with optimization where iteration number is 200 and
50, the blue dashed line shows the case without optimization where posture
control is performed with the FB input obtained by the optimum servo system
shown in Chapter 4, and the black dotted line shows the target trajectory. In Fig.
7 (a) - (¢), in the case of controlling the support legs with the FB gain obtained by
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Fig.8 Time response of thigh angle

the optimum servo system without optimization, posture variation occurs because
the FB control system switches at the time of changing the swing leg. However,
when applying the optimization method, it can be seen that large variation
occurring at the time of switching the swing legs are reduced in all control
amounts of the body height, the pitching angle, and the rolling angle. Especially,



with pitching angle and rolling angle, the maximum deflection width is reduced
to less than half, and improvement in control performance can be seen. The
deflection width is suppressed to about half in the pitch angle where iteration
number is 50. We can see the effectiveness of the proposed control method. Figure
8 shows the time response of the thigh angle in the case of the posture control
shown in Fig.7. In the case that the optimization is not performed, the thigh angle
variation becomes large at the time of switching the swing leg, but the case that
the optimization is performed, it can be seen that this large variation is reduced.
From these results, it was shown that by applying the optimization method
proposed in this study to the posture control of the 6-legged robot, it is possible
to reduce the variation of the input due to switching of the control system
generated at the time of switching the swing leg.

7. Conclusion

In this study, we examined a control method to optimize the control input obtained

by the optimum servo system as a posture control method of a six-legged robot

and verified the effectiveness of the proposed method by 3D simulation of a six-
legged robot.

1. The design procedure of the optimum servo system as the posture control
method of the six-legged robot and the method to optimize the FB control
input obtained by the optimum servo system are shown.

2. The effectiveness of the proposed control method was confirmed by 3D
simulation using the 3D CAD model of the six-legged robot. Specifically, in
the case of walking with five support legs, when the optimization is not
performed, a large variation occurs in the height of the body, the pitching
angle, and the rolling angle at the time of switching the swing leg. However,
when the optimization method is applied, the variation was reduced.
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