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Unmanned Aerial Vehicle (UAV) is a flying robot that acts without a constant human pilot in-

volvement. UAVs are applied in military and civilian areas, in search and rescue operations, 3D

mapping, simultaneous localization and mapping (SLAM) and other tasks. SLAM approaches are
based on various sensors usage including lidars and cameras. Visual SLAM approaches rely on

visual sensing systems and successfully operate within GPS-denied environments. Further, apply-

ing several UAVs allows for complex tasks that cannot be handled by a single robot, minimizes
exploration time and adds a security level for a case of a single robot failure. This paper presents a

comparison of two most applicable vision-based collaborative monocular SLAM methods in Robot

operating system, CORB-SLAM and CCM-SLAM, that run on a pair of UAVs. The evaluation is
performed on preassembled datasets that correspond to a virtual environment in the Gazebo sim-
ulator. The error estimation in virtual experiments demonstrated that CCM-SLAM has a higher
global localization accuracy than CORB-SLAM.
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1. Introduction

Intelligent unmanned aerial vehicles (UAVs) nowadays play a significant role in security

monitoring, locating victims after earthquake or landslides disasters, remote area surveil-

lance, hazardous environment monitoring and small package delivery.1,2 Since most of these

environments typically suffer from a GPS signal jitter and interference, an alternative lo-

calization system is required.3 One of the possible solutions in GPS-denied environments

is combining an inertial measurement unit (IMU) that could determine a UAV position

in space with an onboard monocular camera for building a map and localizing the UAV.4

Such tasks, referred as simultaneous localization and mapping (SLAM), are among the most

interesting challenges for robotics community research.5,6 The goal of a Visual SLAM (vS-

LAM) method is to map an unknown environment and to localize a robot (or a sensor)

within this map with a focus on real-time operation while using a visual sensor or several

visual sensors.7 A monocular camera is a good selection of a visual sensor for a UAV-based

vSLAM due to its reasonable price, light weight and ability to provide reach data about an
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underlying terrain.

One of the disadvantages of a monocular camera based vSLAM is that missing depth

information (e.g., on the contrary with RGB-D camera or a laser range finder) complicates

system initialization while creating an initial map. While original vSLAM algorithms were

constructed for single robots, recent achievements in collaborative vSLAM usage8 allowed

a significant speedup in mapping and environment exploration time.9

2. Related Work

Most vSLAM systems could be divided into two broad categories: indirect (feature-based)

and direct methods.10 While indirect methods use only specific image features, e.g., object

contour corners or particular image patterns, direct approaches operate directly with raw

pixel intensities. The main drawback of using a direct method in collaborative scenarios is

an increasing communication network load as agents need to exchange with raw images. An

architecture of a vSLAM method could be centralized or decentralized (distributed).

Centralized architecture is a wide-spread SLAM system that consists of a server (a

ground station) and participants (clients). The server performs resource-intensive tasks of

executing computationally expensive algorithms, e.g., Bundle Adjustment11 or Place Recog-

nition.12 Such server allows to equip UAVs with a low-cost central processing unit (CPU)

and a monocular camera, and thus limited resources of a UAV are used to execute only

simple and critical tasks, e.g., a real-time visual odometry.

In 2012 Zou and Tan13 presented CoSLAM algorithm - a collaborative vSLAM for dy-

namic environments that simultaneously employs multiple cameras. Cameras were clustered

into groups according to their view overlapping and worked together to reconstruct a global

map. The approach requires the onboard cameras of different UAVs to capture an identical

picture for synchronizing at cameras initialization stage and Nvidia graphics card at the

server for resource-intensive calculations.

In 2017 Li et al.14 proposed CORB-SLAM, which is a collaborative ORB-SLAM215 based

method. It is a centralized multi-robot vSLAM that provides map fusion and map sharing

capabilities. Each agent performs local mapping and then transmits data to a central server

for further processing.

In 2019 Schmuck and Chli16 developed a centralized collaborative monocular SLAM

framework CCM-SLAM with a communication strategy that allows to operate with a limited

bandwidth. Individual UAVs use their own limited resource for executing real-time visual

odometry, while a server receives each client’s experiences and performs a resource-intensive

task of merging individual maps into a single map.

In a decentralized approach, UAVs exchange experiences directly with each other and

perform all tasks onboard. The biggest challenges in decentralized systems are data overlap

detection and efficient information sharing between team members under network delays

and communication failures.

Cieslewski et.al.17 presented a data-efficient decentralized vSLAM system that is focused

on effective data exchange between team members. Chen et al.18 proposed a distributed

multi-agent SLAM system based on a novel collaborative relative pose estimating and map

merging method. Moreover, the approach doesn’t need initial relative poses of robots.

Egodagamage and Tuceryan19 developed a collaborative augmented reality framework

based on LSD-SLAM solution with freely moving cameras without knowledge of their ini-

tial relative poses. The framework detects map overlaps of agents using appearance-based

method, ORB-keypoint detectors20 and BRISK-descriptors combination.21 Yet, decentral-

ized SLAM systems require resource-intensive computational equipment and efficient data

exchange protocols.
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3. Description of the selected SLAM algorithms

For evaluation, we selected two most popular feature-based centralized collaborative vS-

LAM methods with an open-source implementation: CORB-SLAM and CCM-SLAM. Both

algorithms are based on the original ORB-SLAM2 algorithm15 and extend it for multiple

cameras use. ORB-SLAM2 is a versatile feature-based SLAM solution for monocular, stereo

and RGB-D cameras, which utilizes the ORB (Oriented FAST and Rotated BRIEF) fast

feature detector for tracking, mapping and place recognition. These features are robust to

rotation and scale and have a good invariance to camera auto-gain and auto-exposure, and

illumination changes. Moreover, the features are fast to extract and match allowing for

real-time operation and show good precision-recall performance in bag-of-word place recog-

nition.22 The system has the embedded place recognition module based on DBoW212 for

relocalization or for reinitialization in an already mapped scene, and for a loop detection.

CORB-SLAM14 is an extended version of ORB-SLAM2 in which clients transmit local

map information to a server, and the server creates a single integrated map. Next, the server

sends each client updated (at the global map generation procedure) data about a changed

part. The clients only refer to the updated global map and do not reflect it in their local

onboard maps.

In CCM-SLAM16 each agent runs only visual odometry with a limited number of key

frames. Data, including detected features, their descriptors, and 3D positions, are constantly

sent to a server. The server constructs local maps from those key frames, trying to close a

loop and merge the local maps. Pose optimization and bundle adjustment are also applied

by the server to further refine those maps. Agents constantly download updated key frames

from the server to augment their own map for a better pose estimation.

Fig. 1: A virtual world in the Gazebo simulator. The collapsed building (left) is patrolled

by a pair of Hector Quadrotor UAVs (right).

(a) Bountrophedon23 paths. (b) Spiral paths. (c) Closed F-shape paths.

Fig. 2: Area coverage paths: the red and blue lines are UAVs trajectories. S and T denote

start and target positions respectively.
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4. Virtual Experiments

4.1. Experimental configuration

We used the Hector Quadrotor UAV24 of Technische Universität Darmstadt, which is inte-

grated into the Robot operating system (ROS) framework as hector quadrotor ROS package

for its modelling and control in the Gazebo simulator.25 The package provides a 3D-model

of the UAV (Fig. 1, right), onboard cameras, laser rangefinders and plugins for control. The

default monocular camera of the hector quadrotor package is a forward-looking camera.

Such configuration is not suitable for our virtual experiments setup, because UAVs perform

a vSLAM task for an underlying terrain. We used the Unified Robot Description Format

(URDF) to modify the camera into a perspective downward-looking onboard camera.

For vSLAM performance evaluation we constructed a virtual Gazebo world26,27 that

contains the modified collapsed police station28 model, which was extended with additional

objects, including pieces of walls, trusses and furniture (Fig. 1, left). All vSLAM calculations,

both on the server and the client sides, were carried out on the same personal computer

with Intel Core i5-3210M processor, 6 GB RAM, and Ubuntu 16 (x64) operating system.

4.2. Surface coverage and area reconstruction

UAVs’ movements should cover an entire area of interest involving the Coverage Path Plan-

ning (CPP)29 mechanism, which has a broad variety of practical applications.30–33 The

aerial CPP is a path planning where a UAV covers all accessible parts of an exploration

area. In our virtual experiments two UAVs used three different coverage paths (Fig. 2) in

order to explore the entire underlying area (Fig. 1). A process of a surface reconstruction

is a restoration of a digital representation of a scanned physical form. In our case, scanning

provides a 3D point cloud as a result of a monocular vSLAM algorithm execution. Two

UAVs explore the collapsed building area within Gazebo virtual experiments and obtain 3D

point clouds while running CCM-SLAM (Fig. 3) and CORB-SLAM (Fig. 4) algorithms.

Fig. 3: CCM-SLAM: the 3D point cloud of

the collapsed building.

Fig. 4: CORB-SLAM: 3D view of the world;

the blue/green rectangles are key frames.

4.3. Visual odometry

Localization accuracy is an important feature of a navigation task, and visual odometry

mechanisms allow a camera position estimation and a UAV localization within a map

(Fig. 5). A visual odometry component receives image snapshots and for each frame calcu-

lates movement of a camera by tracking scene landmarks.34

5. Comparison of SLAM methods

We compared the two vSLAM methods, CORB-SLAM and CCM-SLAM, by considering

their localization accuracy and quality of a resulting 3D point cloud. Table 1 shows results
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Fig. 5: Visual Odometry: the estimated key frames (the blue rectangles) while the UAV

was landing using CORB-SLAM (left) and visualization of CCM-SLAM odometry-based

computed trajectories in RViZ (right).

(a) CCM-SLAM estimated trajectories

(b) CORB-SLAM estimated trajectories

Fig. 6: Comparison of the trajectory output of the left-sided UAV (in meters) computed

by monocular CCM-SLAM (top) and CORB-SLAM (bottom) methods.

of error estimation for CORB-SLAM and CCM-SLAM with regard to ground truth data

while the pair of UAVs explored the environment using one of the three predefined trajectory

types - a bountrophedon, a spiral or a closed F-shape paths. The third column specifies a

UAV position at the start of the exploration: the left (right) UAV always starts at the left

(right) bottom corner of a map for all trajectory types. In Fig. 2 the paths of the left and

right UAVs are depicted with blue and red colors respectively.

We used Absolute Trajectory Error (ATE) for measuring difference between points of the

ground truth UAV trajectory and the estimated by each SLAM algorithm UAV trajectory.

To represent the ATE evaluation function we used maximum and minimum ATE values, root

mean square error (RMSE), median and standard deviation,35 which appear in columns 4-8

respectively, all measured in metres. To calculate these values from the SLAM algorithms’

odometry and the ground truth data, the EVO package36 was used. The table shows that

CCM-SLAM ATE values significantly exceed the ones of CORB-SLAM, e.g., the average
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(a) CCM-SLAM estimated trajectories

(b) CORB-SLAM estimated trajectories

Fig. 7: Comparison of the trajectory output of the right-sided UAV (in meters) computed

by monocular CCM-SLAM (top) and CORB-SLAM (bottom) methods.

median error of CCM-SLAM exceeds the median error of CORB-SLAM in 2.56 to 3.22

times. However, this happens only locally and does not work at a global scale due to the key

frame optimization procedure, applied by CORB-SLAM, which is explained in some more

details in the next paragraph. Thus, as Table 1 shows, CORB-SLAM is more precise than

CCM-SLAM while localizing at a small-scale of local patches.

At the same time, the algorithms’ behaviors at a global scale differ from the local patch

results. The trajectories estimated by visual odometry of CORB and CCM odometry mod-

ules while following the three predefined trajectories are presented in Fig. 6 and Fig. 7. Even

a rough estimation of these global trajectories clearly demonstrates that CCM-SLAM was

significantly more efficient in localization than CORB-SLAM. The CCM-SLAM odometry

localized more accurately at a vertical distance (along Z-axis) from an object’s surface, while

the CORB-SLAM odometry attempted to optimize key frames by merging similar frames,

thus loosing a significant amount of valuable intermediate data of the in-between frames.

For example, in Fig. 7 b, left sub-figure, all frames between a key frame at (-9.2,-0.8) and a

key frame at (-12,-10) were lost. In such cases the CORB-SLAM operated UAV trajectory

demonstrated significant deviations from the ground truth trajectory.

As for the mapping, both algorithms constructed sparse 3D point clouds, and Figures 8, 9

demonstrate maps that were generated by CCM-SLAM and CORB-SLAM respectively. The

maps were constructed by the ORB-SLAM2 mapping system module for both CCM-SLAM

and CORB-SLAM, and had the same high quality.

6. Conclusions

This paper presented a comparison of two centralized vision-based collaborative monocu-

lar SLAM methods, CORB-SLAM and CCM-SLAM. The proposed vSLAM methods were

evaluated and analyzed at preassembled datasets within virtual experiments in Gazebo
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Fig. 8: The 3D point cloud of CCM-SLAM.

The green and white lines show the trajec-

tories of the right and the left UAVs respec-

tively.

Fig. 9: The 3D point cloud of CORB-SLAM.

The blue and green rectangles indicate the

positions of the right and the left UAV’s

camera respectively.

Table 1: Absolute Trajectory Error for all trajectories

Trajectory SLAM method UAV position Max (m) Min (m) RMSE (m) Median (m)
Standart

Deviation (m)

Bountrophedon

CORB-SLAM
LEFT 0.043540 0.000224 0.005823 0.001949 0.004983

RIGHT 0.008748 0.000215 0.002226 0.000987 0.001654

CCM-SLAM
LEFT 0.056326 0.000160 0.009041 0.004295 0.006303

RIGHT 0.041613 0.000716 0.007012 0.003210 0.005277

Spiral

CORB-SLAM
LEFT 0.016961 0.001380 0.006423 0.002834 0.004127

RIGHT 0.040958 0.000436 0.007334 0.003275 0.005649

CCM-SLAM
LEFT 0.048540 0.001804 0.010874 0.008390 0.005518

RIGHT 0.069150 0.001084 0.020647 0.011273 0.013048

F-shape

CORB-SLAM
LEFT 0.028148 0.000231 0.004053 0.001566 0.003402

RIGHT 0.119337 0.002851 0.021766 0.008247 0.017544

CCM-SLAM
LEFT 0.064889 0.000479 0.011147 0.002747 0.009578

RIGHT 0.145269 0.003860 0.035081 0.023757 0.020233

simulation. Two UAVs performed CORB-SLAM and CCM-SLAM exploration of a virtual

environment using three predefined trajectories of a bountrophedon, a spiral or a closed

F-shape trajectories. The error estimation demonstrated that CORB-SLAM had a higher

localization accuracy at a local scale. At the same time, at a global scale CCM-SLAM signif-

icantly outperformed CORB-SLAM; the later demonstrated unstable behavior with regard

to a ground truth trajectory due to its key frames optimization approach.
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12. D. Gálvez-López and J. D. Tardos, IEEE Transactions on Robotics 28, 1188 (2012).
13. D. Zou and P. Tan, Transactions on pattern analysis and machine intelligence 35, 354 (2012).
14. F. Li, S. Yang and X. Yi, Corb-slam: a collaborative visual slam system for multiple robots, in

Int. Conf. on Collaborative Computing: Networking, Applications and Worksharing , 2017.
15. R. Mur-Artal and J. D. Tardós, IEEE Transactions on Robotics 33, 1255 (2017).
16. P. Schmuck and M. Chli, Journal of Field Robotics 36, 763 (2019).
17. T. Cieslewski, S. Choudhary and D. Scaramuzza, Data-efficient decentralized visual slam, in

2018 IEEE International Conference on Robotics and Automation (ICRA), 2018.
18. X. Chen, H. Lu, J. Xiao and H. Zhang, Distributed monocular multi-robot slam, in Int. Conf.

on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), 2018.
19. R. Egodagamage and M. Tuceryan, Computers & Graphics 71, 113 (2018).
20. E. Rublee, V. Rabaud, K. Konolige and G. R. Bradski, Orb: An efficient alternative to sift or

surf., in ICCV , (1)2011.
21. S. Leutenegger, M. Chli and R. Siegwart, Brisk: Binary robust invariant scalable keypoints, in

2011 IEEE international conference on computer vision (ICCV), 2011.
22. R. Mur-Artal and J. D. Tardós, Fast relocalisation and loop closing in keyframe-based slam,

in 2014 IEEE International Conference on Robotics and Automation (ICRA), 2014.
23. H. Choset and P. Pignon, Coverage path planning: The boustrophedon cellular decomposition,

in Field and service robotics, 1998.
24. J. Meyer, A. Sendobry, S. Kohlbrecher, U. Klingauf and O. Von Stryk, Comprehensive sim-

ulation of quadrotor uavs using ros and gazebo, in Int. conf. on simulation, modeling, and
programming for autonomous robots, 2012.

25. N. Koenig and A. Howard, Design and use paradigms for gazebo, an open-source multi-robot
simulator, in International Conference on Intelligent Robots and Systems (IROS), 2004.

26. B. Abbyasov, R. Lavrenov, A. Zakiev, K. Yakovlev, M. Svinin and E. Magid, Automatic tool
for gazebo world construction: from a grayscale image to a 3d solid model, in International
Conference on Robotics and Automation (ICRA), pp. 7226-7232, 2020.

27. R. Lavrenov and A. Zakiev, Tool for 3d gazebo map construction from arbitrary images and
laser scans, in Int. Conf. on Developments in eSystems Engineering (DeSE), 2017.

28. Gazebo Model Database. https://github.com/osrf/gazebo_models.
29. H. Choset, Annals of mathematics and artificial intelligence 31, 113 (2001).
30. R. N. De Carvalho, H. Vidal, P. Vieira and M. Ribeiro, Complete coverage path planning and

guidance for cleaning robots, in International Symposium on Industrial Electronics, 1997.
31. A. Zelinsky, R. A. Jarvis, J. Byrne and S. Yuta, Planning paths of complete coverage of an

unstructured environment by a mobile robot, in Int. conf. on advanced robotics, 1993.
32. B. J. Englot and F. S. Hover, Sampling-based coverage path planning for inspection of complex

structures, in International Conference on Automated Planning and Scheduling (ICAPS), 2012.
33. R. Lavrenov, E. Magid, F. Matsuno and M. Svinin, Development and implementation of spline-

based path planning algorithm in ros/gazebo environment, in Trudy SPIIRAN , pp. 57-84, 2019.
34. D. Scaramuzza and F. Fraundorfer, IEEE robotics & automation magazine 18, 80 (2011).
35. J. Sturm, N. Engelhard, F. Endres, W. Burgard and D. Cremers, A benchmark for the evalu-

ation of rgb-d slam systems, in Int. Conf. on Intelligent Robots and Systems, 2012.
36. M. Grupp, evo: Python package for the evaluation of odometry and slam. https://github.

com/MichaelGrupp/evo, (2017).

120


