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The problem of the equilibrium of a multi-legged walking robot on the surface of a brittle straight
circular rough cylinder is investigated. Each of the legs has one point in contact with the cylinder

with Amonton-Coulomb friction and for two support points, with rolling friction. Numerically and
analytically obtained possible regions of contact points on the cylinder for which there is a solution

to the kinetostatics problem on the cylinder. This task has analogies to the problems of holding

a cylindrical object by the fingers of a robot arm or a robot resting on an arbitrary surface, the
legs of which are suspended on the body on the surface of the cylinder. The robot can climb on

the cylinder with two legs located on the same diameter at the base of the cylinder. And due

to dry friction with four legs located on opposite sides from the robot center of mass or point C
introduced into the dynamics. The oscillations of the cylinder on the cylinder in the vicinity of a

stable equilibrium position serve as an analogue of the problem. The cylinder lies on one finger of

the hand of a humanoid robot perpendicular to it, adheres to the ends of the other three fingers.
Similarly holds a glass.

1. Introduction

In this paper, we discuss the problem of walking robot dynamics on one-side constraint.

While the general walking robot motion on a plane was analyzed in detail in the work1

the case of the dynamics on a curved surface is far more complicated. Model dynamics

and control problems were considered in the work.2 Equilibrium conditions for a solid on

a rough plane was considered in the work.3 Walking robot parameters optimization for the

motion in tubes was considered in the work.4 The special case of a robot with eight legs

whose up porting points are restricted to the inner surface of a tube was considered in the

work.5 In the work6 control of the movement of the manipulator along with the connection

was disscused. In the present work, we consider the more general case of a robot with four

arbitrary supporting points on a rough cylinder and on a curved surface. And discussed the

problem of transfer by a manipulator with a four-finger grasp of a rough cylinder.

2. The problem of climbing the cylinder

We study the problem of a walking robot consisting of a body, l hands with m fingers and

n feet resting on a straight circular rough cylinder, of radius ρ, at n+m support points. It

is assumed that the hands, fingers and feet of the robot make a given movement relative to

the body of the robot. Each of the fingers have one point in contact with the cylinder with

Amonton Coulomb friction and for two support points, with rolling friction. Numerically

and analytically obtained are possible regions of contact points on the cylinder for which

there is a solution to the kinetostatics problem when transferring the cylinder with four

fingers. The robot can hold the cylinder with two fingers located on the same diameter at

the base of the cylinder. And due to dry friction with four fingers located on opposite sides

from the center of mass of the cylinder or point C introduced into the dynamics.

We number the reference points. If the reference point is one, then the reference set is a
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point. In the case of two points, the traversal of the graph is a segment. For three points,

a reference triangle. Four points can be traversed along the supporting convex quadrangle.

Or save on a detour with three segments of the letter x with a cover. These graphs reflect

the relationship of internal forces between pairs of points. And if you add to them the

force applied in the center of mass, then you can follow them using the graph in the convex

pentagon or drawn on connecting all the pairs of points of the star in a continuous connection.

Note that the support polygons are spatial. And spatial x-shaped stars or stars constructed

with roundabouts with intersection can be more convenient than supporting polygons, even

generalized to spatial ones. Five, six and eight fulcrum points give either a convex pentagon,

and then, respectively, or stars. This justifies five fingers on a person’s hand, six legs of a

bug and eight spiders.

An object grasping problem is equivalent to the problem of the walking robot with

n legs.7,8 The figure 1 shows the case of four points in support and to the right one of

Fig. 1. Division of a reference set into two subsets.

the possible support triples. The thumb is at one end of the diameter of the cylindrical

shell of the turtle. The remaining fingers are in the neighborhood of the solution when two

support points are located on one straight line orthogonal to the axis of the cylinder.9 In

co-authorship with V.V. Koryanov, we considered the turning of a six-legged walking robot

into working condition from an emergency situation. The turtle, for example, flips over by

pushing it off the surface. An alternative method could be the help of another walking robot

with a four-finger manipulator. Unless of course the robot is not able to perform the tip-top

spinning trick.

Let the point O is an origin fixed in absolute space. Suppose that robot arms fingers

accomplish the desired motion with respect to the body of the robot. Using general dynamics

theorems to describe the cylinder motion, we obtain six different equations for the cylinder

dynamics from the momentum and angular momentum theorems. Among them, there are

three equations of the body translation with point A and another three describe body

rotation about point A. For prescribed motion be realized then reaction in m footholds

should satisfy following kinetostatic equations:9∑m

i=1
R̃i = −Φ̃,

∑m

i=1
r̃i × R̃i = −M̃, (1)

where R̃i is reaction component, r̃i corresponds to the i-th finger supporting point vector,

Φ̃ is the sum of the external active forces plus time derivative of the desired momentum, and

M̃ is the sum of external active forces momentum and time derivative of desired angular

momentum with respect to the point O. In two vector equations in (1), the former corre-

sponds to the momentum of the object (and is equivalent to three scalar equations when

projected onto the basis vectors), while the latter defines the desired change of the angular

momentum.
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Assuming that Φ̃ is orthogonal to M̃, we obtain that the system {Φ̃, M̃} can be also

used at the point C

r̃C × Φ̃ = M̃, r̃C = −M̃× Φ̃

Φ̃2
, Φ̃ = |Φ̃|,

where r̃C is the vector OC, and C corresponds to the point at which the resultant of the

reactions is acting. The fragility of the cylinder means a restriction on the modulus of the

normal components of the reactions: Ñi ≤ a.
A further problem of reactions distribution R̃i in some fixed point of time is investigated

by the proposal that force Φ̃ is acting at the point r̃C and force moment there is zero. Motion

equations (1) for finding reactions of fingers prescribed motion can be transformed:10∑m

i=1
R̃i = Φ̃,

∑m

i=1
r̃i × R̃i = r̃C × Φ̃. (2)

For example point C can be the grasping object center of mass.

Assuming that the robot footholds are on the surface of a rough cylinder of radius ρ with

a friction coefficient k, we introduce the coordinate system Oxyz such that the axis Ox is

directed along the cylinder axis (so that the projection of Φ̃ on the axis Ox is negative –

see Fig. 2.), the axis Oz is parallel to the vector Φ̃, and the angle between the cylinder axis

and the vector Φ̃ is α.11

Fig. 2. Fragile cylinder.

The problem of finding the reaction forces (2) is similar to the foothold reactions distri-

bution problem for walking robot, when the footholds are on the external surface of a rough

inclined cylinder where the axis has an angle α with respect to the vector Φ̃.

In the coordinates Oxyz we define R̃i = (R̃xi , R̃
y
i , R̃

z
i ), r̃C = (x̃C , ỹC , z̃C), and

Φ̃ = (−Φ̃ sinα, 0, −Φ̃ cosα), i = 1, · · · ,m. In case of a one-sided surface, and the grasp

inside the cylinder, we have additional restrictions on normal reactions Ñi:
12

Ñi = R̃i · eiν ≥ 0, (3)

where eiν is an external normal to i-th supporting point on the cylinder, while the tangential

components are given by F̃i = R̃i − Ñieiν .

For the reactions to be in the friction cones (2), we have following inequalities:

|F̃i| ≤ kÑi, (4)

i.e. the tangential reactions F̃i are restricted by Coulomb limiting friction value. When F̃i
exceeds this limiting value, the robot legs and arms begin to slide along a surface.

The reaction distribution problem then reduces to the solution of equations (2), and

inequalities (3), (4), for reactions limited to the friction cones. The restricted motion can

only be realized if the solution of system (2)-(4) does exist.

The same inequalities are for walking robot on the cylinder.13 If the grasp is out the

cylinder this inequalities (3) have opposite signs.
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For example if m is even, and one of each par of the supporting points is on and another

is in the thin surface such that we consider them like one geometrical point. Then we need

only inequalities (4).

For ri = r̃i/ρ = (xi, yi, zi), in the cylinder coordinate: ri = (xi,− sinϕi, cosϕi), eνi =

= (0,− sinϕi, cosϕi), Ni = Ñi/Φ̃ = (0,−Ni sinϕi, Ni cosϕi), where ϕi is the angles between

axis Oz and cylinder normal eνi . We define ex as the unitary vector in the Ox axis, while

eτi = (0, cosϕi, sinϕi) as the tangential to the cylinder. Then the tangential reaction: Fi =

= (F xi , F
yz
i cosϕi, F

yz
i sinϕi), where F xi = Fi·ex, F yzi = Fi·eτi , Ri = R̃i/Φ̃ = (Rxi , R

y
i , R

z
i ),

rC = r̃C/ρ = (xC , yC , zC).

Projecting onto Oxyz the first and the second vector equations (2) we obtain

∑m

i=1
F xi = sinα,∑m

i=1
(Ni sinϕi − F yzi cosϕi) = 0,∑m

i=1
(Ni cosϕi + F yzi sinϕi) = cosα,∑m

i=1
F yzi = −yC cosα,∑m

i=1
(xiNi cosϕi + xiF

yz
i sinϕi − F xi cosϕi) = xC cosα− zC sinα,∑m

i=1
(xiNi sinϕi − xiF yzi cosϕi − F xi sinϕi) = yC sinα.

(5)

Let p = Rx1 − Rx2 . We further define the coordinate differences, and the supporting

points difference of angles of axis Oz are ∆x = x2 − x1, ∆y = y2 − y1, ∆z = z2 − z1, ∆ϕ =

= ϕ2 − ϕ1. We then project system (2) onto the axes Oxyz. For arbitrary surface we find

that the second equation of (2) (corresponding to the moment) has the skew-symmetric

matrix with respect to the component Rxi . These are 2 independent equation, while the

third equation corresponds to the restriction of the point C to the plane containing the two

footholds. As a result, the system (2) yields 5 independent equations and a restriction.

3. A four-finger grasp

During the robot motion one, two, three and four-supporting points phases are changed. For

example, Australian lizards - yellow-bellied three-toed skinks (saiphos equalis). Or a horse

with four legs.

First, we consider the one-supporting phase of the grasp. Let m = 1, then the motion

existing condition is reaction is equal to force Φ and supporting point and the point C are

on the line along Φ, while the angle between Φ and the normal do not exceed the friction

angle.

If the grasp inside the surface then point C is under the surface. In the opposite case

the grasp is under the surface. Then point C is inside the surface. Or if one finger out the

cylinder, the center mass of an object is up the finger. And the angle between the weight

and the normal not exceed friction angle.

If m is even. And one of each par of the supporting points is on and another is in the

thin surface such that we consider them like one geometrical point. Then it does not matter

where the point C is on the line.
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Fig. 3. The analytical and the numerical parameter diagrams.

Let n = 2, and x1 6= x2. Then p = F x2 − F x1 , and from (2):

F x1 = (sinα+ p)/2, F x2 = (sinα− p)/2,

N1 =
−p sin2 ∆ϕ

2
+ (x2 − xC) cosϕ1 cosα

∆x
+Nα

1 ,

N2 =
−p sin2 ∆ϕ

2
+ (xC − x1) cosϕ2 cosα

∆x
+Nα

2 ,

F yz1 =
−p sin ∆ϕ+ 2(x2 − xC) sinϕ1 cosα

2∆x
+ F

(yz)α
1 ,

F yz2 =
p sin ∆ϕ+ 2(xC − x1) sinϕ2 cosα

2∆x
+ F

(yz)α
2 ,

tanα =
∆x(sinϕ2 + yc) + (xC − x2)s21

yCc21 + zCs21 − sin ∆ϕ
,

(6)

where Nα
i and F yzi are the functions of xi, ϕi, yC and zC .

The conditions (4) can be displayed in the form

Ep2 +B1p+ C1 ≤ 0, Ep2 +B2p+ C2 ≤ 0, (7)

where

E = (∆x)2 + sin2 ∆ϕ− 4k2 sin4

(
∆ϕ

2

)
,

Bi, Ci are the functions of xi, ϕi, xC , yC and zC .

The boundaries between different regimes can be determined analytically. For example,

in the case of E < 0, the solution exists, and can be obtained analytically, as shown in Fig. 3,

on the left. Note that in this case it’s limited to the range ∆x ≤ 2kρ. In contrast to this

behavior, for E ≥ 0 there is no such restriction and an additional step is required to address

the question of the existence of the solution. At the point (0, 0) we find E = 0, which means

that two footholds are orthogonal to the cylinder axis. Here, two possible solutions are either

identical, or limited to a single diameter. In the latter case, point C and the reaction have to

be in one plane, parallel to force Φ, and the problem has a solution. For the desired legs or

fingers configurations and given point C, the problem can be solved numerically. In Fig. 3,

on the right, we present the numerical solution for the example when x2 = −x1 = ρ =

= k = 1. Note that in this case E > 0.

When E = 0, the reaction distribution problem reduces to the linear inequalities for the

parameter p. Specifically, the condition (7) was analyzed in two cases, when E = 0 and
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Fig. 4. The case of α = 0, x2 = −x1 = ρ = k = 1.

E > 0, and when the solution of the problem does exist, the solutions were shown in the

plot Fig. 4.

For E > 0, we need to consider two conditions. First is the restriction on the determinants

D ≥ 0, while the second is the requirement of a non-empty intersection of the set of point

of the intervals between the roots of quadratic equations. From this plot, we see that, if

two points are on one diameter, then the solution of the reaction distribution problem exist.

The two lines in the plot, correspond to ϕ1 = ϕ2 + π or ϕ1 = ϕ2 − π. The rhombus form

represents the requirement on the determinants Di ≥ 0, while additional conditions further

restrict the range.

In Fig. 4 on the right we present the results for E > 0 and E ≤ 0, when x2 = −x1,

ϕ2 = −ϕ1 and shows the case of α = π/4. The figures for α = 0 and increased to π/2

are shown in the work.14 Note that when α = π/2, the solutions exist only for diametrical

footholds.

Fig. 5. The parameter range for α = π/3; x = 1, 1.

For two-finger robot when E is negative, the solution exist, and obtained analytically.16

Using numerical simulations we explain the reaction distribution problem existing and build

this problem solution existing fields for given footholds and point C position. For example,

for two-foothold phase, we consider symmetric, about point C, along and orthogonal cylin-

der axis, robot configurations. For first of these configurations examined three cases with
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nonnegative E coefficient, for distance x, between point C and footholds: 0, 9; 1 and 1, 1

at ρ and k equal 1, α from 0 to π (in all 13 different values cylinder inclination angles).

Reactions distribution problem solution existing fields constructed on the two angles plane,

correspond to footholds projections on the cylinder base and three dimensional fields which

supplement this plane by point C z-coordinate altitude. When x equals to 1, 1 for α equals

π/3 in three-dimensional fields observed bundles of separate points, Fig. 1. That means that

the point C altitude position more harsh change while changing the angles.

When α equals to 0, x equals to 1, the field consist of three separate situated subre-

gions. On the angle plane each of pair parallel lines corresponds to support on the cylinder

diameter plane section contained point C.14 There is connected field between these lines. It

contains the line segment corresponding to the angles equality, robot supported above on

the line which is parallel to cylinder axis and satisfy force direction deviation restriction.

The indicated segment on the plot disappear when x equals to 0, 9 for α equals π/4, and at

increasing x, later, for 4π/9. It corresponds to the robot beginning sliding down the cylin-

der.15 When x equals to 1, 1 for α equals π/3 in three-dimensional fields observed bundles

of separate points. That means that the point C altitude position more harsh change while

changing the angles.

There is an analogy of supporting on a cylinder and on one or two planes. Let speak about

static stability of walking apparatus with support on two unilateral planes. For example a

smooth planes in homogeneous gravity field. The static-stability conditions for a walking

apparatus with supporting points at the interior surface of a smooth horizontal cylinder and

on two smooth planes was studied in8 on the right.

Fig. 6. Two planes.

4. Conclusion

If the cylinder is fragile, then three legs may not be enough. The robot can walk on fragile

cylinder with four legs located on the outer surface of the upper half cylinder. In this case,

the load on four footholds is distributed more evenly, so that the values of normal reactions

do not exceed the specified value a. For example, let one of the points of support and

the center of mass of the robot be located in the vertical plane containing the axis of the

cylinder, and the other two points of support in the plane orthogonal to the axis of the

cylinder, while the robot center of mass is located inside the support triangle. Similarly, if

the robot is on its inner surface, then four support points should be located on the inner

half of the cylinder. Four footholds may be located in a vertical plane containing the axis

of the cylinder. They can also be located symmetrically in the vicinity of the section of the

cylinder passing through the point C. The four-legged robot can go gallop and whether to

rearrange its legs in pairs.
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