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The article proposes a methodology for the synthesis of nonlinear controllers for a mobile robot. The new 
approach improving quality indicators of the system is presented. Control actions are calculated on the basis 
of mesh-free approximation of a value function corresponding optimal control or differential game problem. 
Due to computational efficiency it is possible to apply the proposed method for real-time applications. This 
approach assumes that the control system includes a block for processing complete information about the 
mobile robot. The paper shows the superiority of quality indicators in comparison with the classical methods 
of synthesis of controllers for a mobile robot. The article ends with an analysis of the influence of various 
integral criteria on the speed and overshoot of the control system.   

1.    Introduction 

Mobile robotics is an area of active scientific research [1-4]. This is primarily due to the fact 
that mobile robots (MR) are finding more and more applications in the civil and special spheres 
of human life. Recent decades have been characterized by the use of artificial intelligence 
methods (in particular, fuzzy logic) for MR control tasks [5-8]. The issues of stability and the 
choice of the optimal structure of an intelligent fuzzy controller as well as its parameters tuning 
are the key in this direction. 

In practice, the theory of absolute stability is used as a convenient tool for studying the 
stability of intelligent control systems. This approach allows to determine acceptable sectors in 
which non-linear characteristics of the conceptual (fuzzy) controller can be located. However, 
in most cases, the classical methods of the theory of absolute stability are insufficient and do 
not allow the determination of the complete boundaries of sectors. To overcome this obstacle, a 
number of numerical algorithms were proposed for constructing Lyapunov functions, which 
solve the absolute stability problem of a system with several non-stationary elements (see, for 
example, [9]). In [10, 11], these algorithms were applied to construct guaranteed stability 
regions of automatic control system (ACS) with various types of controllers and parametrically 
disturbed objects.  

Further development of the algorithms given above is possible due to the application of the 
theory of optimal control and differential games. Well known result of these theories states that 
optimal control actions can be computed using value function. Since in most cases the analytical 
solutions can’t be found, the number of numerical algorithms was developed (see for example 
[12]).  These algorithms have proven convergence, but cost a lot of computer memory and CPU 
time. In this paper we introduce a new approach, which uses mesh-free methods for value 
function approximation [13, 14]. As shown below, obtained approximations have a small 
evaluation time and can be applied in real-time applications. Moreover, value functions are 
closely related to Lyapunov functions and in the case when some additional requirements are 
satisfied, the resulting system is asymptotically stable [15, 16]. 

When the structure of controller is known, it is possible to synthesize nonlinear controller 
which parameters depend on MR state vector. This requires the inclusion of block processing 
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the vectors of full information about the state of mobile robot. The latter aspect represents a 
great practical interest for organizing the control of a highly maneuverable object that has (or 
permits) full state information. For example, in the task of trajectory control of a mobile robot 
in plane, full information refers to the vector consisting of Cartesian coordinates and the angular 
orientation of the robot. In most cases such information can be obtained by installing appropriate 
on-board sensors for mobile robot. The main purpose of this paper is to show that the use of 
complete information with the proposed synthesis method can significantly improve the quality 
indicators of the trajectory motion of MR. 

The article is structured as follows. Section 2 gives a complete description of the solving 
problem. Also, the equations of MR motions and the structure of the ACS is given. In Section 
3, the parameters of the controller with constant coefficients are synthesized, followed by the 
graphs of MR positioning errors during trajectory motion. Section 4 is devoted to the synthesis 
of nonlinear characteristics of the controller in the presence of complete information about the 
MR state vector and the given integral quality criterion. Comparisons are made with the results 
from Section 3. An analysis of the influence of the integral criterion on the quality of trajectory 
motion of the MR is presented in Section 5. A summary of the results and conclusion are given 
in Section 6. 

2.    Problem Formulation 

A two independent drive wheels mobile robot can be considered as a moving object with a high 
degree of controllability. The expediency of independent rear wheels for this type of MR was 
shown in [17] (Figure 1). This configuration increases maneuverability, but at the same time it 
requires a special approach to the synthesis of nonlinear characteristics of the controller, 
providing not only stability, but also the required quality. 

For simplicity, we assume that there are no non-stationary parameters in the MR. The 
kinematic equations of such MR have the following form [18]: 

cos 	
sin 	
 

(1) 

One of the most common methods of trajectory control MR is based on the concept of 
tracking a referenced vehicle (RV). In this case, the RV implements the ideal movement along 
the desired trajectory, and the MR seeks to minimize the deviation from this movement (Figure 
2). 

 
 

Figure 1. Mobile robot with two independent drive 
wheels. 

 
 

Figure 2. Real mobile robot and referenced vehicle. 

 
If RV equations of motion are taken in the form 

cos 	
sin 	
, 

 

then MR-RV deviation vector can be written as follows 
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cos sin 0
sin cos 0
0 0 1

. (2) 

Introducing the following change of inputs: 
cos , 

, 
(3) 

and differentiating (2), it gives system (4) after simple calculations [18]. 
0 0

0 0
0 0 0

0
sin
0

1 0
0 0
0 1

, (4) 

Linearization (4) near e = 0, u = 0 gives (5). 
0 0

0
0 0 0

1 0
0 0
0 1

, (5) 

Assuming that Vr(t) ≠ 0 and ωr(t) ≠ 0 as t → ∞, i.e. the mobile robot is not at rest for any t, 
it can be shown that the linearized system (5) is controllable. In particular, it means that there 
exists a stabilizing control u that continuously depends on the state vector [19]. In [20], this 
control is proposed to be chosen from the class given by (6). 

, 
 

(6) 

For known u1, u2 and Vr(t), ωr(t) the values of linear V(t) and angular ω(t) velocities can be 
easily calculated: 

cos , 
. 

(7) 

Thus, the ACS of MR has the structure shown in Figure 3. The following notation is used 
for this block diagram: BE is the block for calculating the error vector e according to formula 
(2), C is the controller, BC is the control conversion block in which equations (7) are used to 
calculate the necessary linear and angular velocities. 
 

 
 

Figure 3. Structure of MR ACS. 
 

3.    Synthesis of the Controller with Constant Coefficients 

A methodology for choosing the coefficients of the controller was proposed in [21].  It makes it 
possible to stabilize the trajectory motion of MR, in particular, it is shown that the calculation 
of ki (i = 1, 2, 3) by the formula 

2 ,	 
| |, 

2 , 

(8) 

guarantees the local stability of ACS near e = 0 when ξ and b are positive. However, according 
to this technique, quality indicators in the synthesis of ACS are not taken into account. Consider 
the situation when Vr(t) ≡ 1.0, ωr(t) ≡ 1.0, xr(0) = 1, yr(0) = 0, θr(0) = π / 2, i.e. when a referenced 
vehicle moves in a unit circle at a constant speed. By substituting the positive values ξ = 1 / 2√2, 
b = 1 in (8), we obtain the coefficients ki, i = 1, 2, 3. The controller (6), (7) with such coefficients 
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will be called the controller with constant parameters (CPC). The trajectory motion of the MR 
with the CPC from the point x(0) = 0, y(0) = 0, θ(0) = 0 is shown in Figure 4. 

The trajectory of the MR with the CPC has significant overshoot and oscillation relative to 
the trajectory of the RV. The transients of the components of the MR positioning error vector 
are shown below (Figure 5). It can be seen that the graphs getting into the 5% zone take about 
5.2 s. 

 
 

Figure 4. Trajectory of the MR with the CPC. 
 

 

Figure 5. Error positioning MR with CPC. 

4.    Synthesis of the Controller in the Presence of Full Information 

The approximation of differential game value function will be used to synthesize the parameters 
of the controller in the presence of full information (FIC) about the object state vector. As 
mentioned in introduction, the computational complexity of numerical methods does not allow 
to use the approximation of value function in real-time applications. Thus, extensively 
developed over the last decade mesh-free algorithms will be applied in this work [13, 14]. They 
are more computationally effective and better cope with the “curse of dimensionality” while 
theoretical convergence to exact solution is considered in [22, 23]. Moreover, if the value 
function is positive definite as well as integrand in a performance index, then it is also a 
Lyapunov function, which guarantees asymptotic stability of the system (for further details see 
[15, 16]). So, it permits not only to synthesize stabilizing control laws in the form of feedbacks, 
but also optimal ones for the chosen integral criterion. 

In the problem of trajectory motion of MR, the FIC synthesis method can be used to 
overcome the difficulty of choosing the coefficients ki(i = 1, 2, 3) in (6), which provide the 
required quality indicators. In this case, ki will not be constant coefficients as for the CPC, but 
non-linear functions of the vector e. Using information on the physical characteristics of MR 
(for example, the maximum angular and linear velocities or the maximum voltage and current 
in the armature windings of electric drives), it is possible to determine the limits of variation of 
ki(e). The specific nonlinear characteristics ki(e) are determined during the approximation of the 
value function. The trajectory of the MR with FIC, in which 0 ≤ ki(e) ≤ 2, i = 1, 2, 3, and the 
integrand of the quality criterion has the form L0(e) = e1

2 + e2
2 + e3

2 is shown (Figure 6). 
Comparing Figure 4 and Figure 6.a, it can be noted that the FIC provides significantly 

higher quality indicators of MR movement: overshoot is noticeably reduced, and the oscillation 
is completely absent. This conclusion is also confirmed by comparing the graphs of the quality 
criterion for the CPC and FIC with the integrand L0. The values of the quality criterion for MR 
with FIC are two times lower than for MR with CPC as shown in Figure 7. Such comparison 
clearly demonstrates the superiority of the method proposed in this section for the synthesis of 
non-linear characteristics of ACS over the approach for the synthesis of CPC from [21]. The 
nonlinear characteristics of the FIC tuned for the integral criterion with the function L0 are 
presented in Figure 8. Average time for one evaluation of approximated value function is  
0.0077 s (2 core 1.9 GHz processor), what must be sufficient for MR real-time control.  
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a) 

 
b) 

 
c) 

 
d) 

Figure 6. Trajectory of the MR with FIC and various integral criteria: L0 – (a), L1 – (b), L2 – (c), L3 – (d). 

 
 

 
 

Figure 7. Values of the quality criterion with L0 for CPC and FIC. 

 
 

 
 

a) 

 
 

b) 

 
Figure 8. Nonlinear characteristics of FIC: values of the linear velocity V in the slice e2 = 0 (a), values of the angular 

velocity ω in the slice e1 = 0 (b). 
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5.    Influence of the Integral Criterion on the Quality of the System 

So far, it has been a question of improving the quality of control through the use of a controller 
that optimizes a specific integral criterion. In this regard, it seems logical to consider the 
influence of the type of integrand L on such quality indicators as speed, overshoot and 
oscillation. For this purpose, we consider the motion of MR with various FICs synthesized for 
several variants of the integrand. 

Let’s introduce the following functions: L1(e) = 100e1
2 + e2

2 + e3
2, L1(e) = e1

2 + 100e2
2 + 

e3
2, L1(e) = e1

2 + e2
2 + 100e3

2. The graphs of the MR trajectories with the corresponding FICs 
are shown in Figure 6. As in the case of FIC tuned to the integral criterion with L0, these 
trajectories have less overshoot than MR with CPC (Figure 4), and the oscillation is completely 
absent. Particular attention should be paid to Figure 6.c, where the movement of MR with FIC 
is carried out completely without overshoots. This statement is confirmed by the fact that by 
changing the form of the integral criterion, it is possible to improve the quality of the system. 
Explanation of this effect in more detail is considered below. 

It is easy to see that Lj (j = 1, 2, 3) differs from L0 in a significant increase in the coefficient 
for the j-th component of the vector e in the integrand. This leads to the fact that the error ej 
makes a decisive contribution to the final value of the integral criterion with Lj. Roughly 
speaking, FIC tuned to the integral criterion with Lj selects from all possible MR trajectories the 
one for which the component ej enters the region close to zero most quickly and with the smallest 
fluctuations (Figure 9). 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 9. Positioning errors of MR with FIC and various integral criteria: L0 – (a), L1 – (b), L2 – (c), L3 – (d). 

 
In view of the above, it is possible to give a physical interpretation to the quality 

improvement of the control of MR with FIC when using L2. Indeed, the fact that the error e2 is 
equal to zero means that the direction of movement of the MR is aimed at the middle of the axis 
of the driving wheels of the RV. Due to this, overshoots can be avoided, since for their 
occurrence it is necessary that the center of driving wheels of the RV is located on the left side 
of the MR movement direction when approaching the trajectory (in the case of counterclockwise 
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circular motion of the RV). Since the MR with the FIC tuned to the integral criterion with L2 
minimizes the error e2 to zero as quickly as possible, the approach to the trajectory occurs at the 
moment when the movement of the MR is already precisely directed to the RV. 

The same argumentation can be used as the basis for the conclusion that it is inappropriate 
to use integral criteria with L1 and L3. So, the fact that e3 is equal to zero means that the directions 
of motion of the MR and the RV coincide. However, if MR and RV are at different points, then 
this will more likely increase the transition process. It is clearly seen from the analysis of Figure 
9.d. Despite the fact that this controller minimizes e3 the fastest, its speed of 3.7 s is the worst 
of all others FICs (but at the same time it surpass MR with CPC). A similar situation takes place 
for the FIC tuned to the integral criterion with L1 (Figure 9.b). The fastest possible reduction of 
the error e1 to the minimum values (i.e., to the situation when the RV is on a straight line passing 
through the axis of the MR drive wheels) does not guarantee a high-quality transition to the 
trajectory. In the end of this section it is necessary to note that all approximated value functions 
and integrands L0, Lj are positive definite, so the resulting system is asymptotically stable what 
can be clearly seen from Figure 9. 

6.    Conclusion 

In the task of trajectory control of a moving object, the FIC provides higher speed, less overshoot 
and oscillation than the CPC. Another important advantage of FIC is that its non-linear 
characteristics are synthesized “automatically” when all steps are taken from the corresponding 
tuning methodology. So, only knowledge of the object model, the capabilities of the control 
devices (control resource) and the desired integral quality criterion are required. In most cases, 
obtaining this information is not difficult and can be done before designing ACS. The performed 
experiments show that by changing the form of the integrand function of the criterion, it is 
possible to further improve the quality of the system. At the same time, none of the FICs tuned 
to various integral quality criteria showed lower qualitative characteristics (in terms of speed, 
overshoot, and oscillation) compared to the CPC. 

Since proposed approach has better quality indicators in comparison to classical methods, 
further development will be directed on physical implementation of control system for real two 
wheels differentially driven robot. This may require to consider more complex mathematical 
model of MR, which involves differential equations of higher order as well as presence of 
external disturbance. In that case the “curse of dimensionality” will play more significant role. 
To keep evaluation time of approximated value function sufficiently small, some special 
techniques such as parallelization and sparse grid methods can be applied.  
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