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This paper proposes a realistic control method for generating a high-speed stealth walking gait of an
underactuated rimless wheel (URW) with an elastic element taking the hardware characteristics
into account. First, we introduce the experimental URW machine and its mathematical model.
Second, we propose a method for driving the relative joint according to the acceleration command

signal of a simple sinusoidal wave. In this approach, the resultant relative-angle trajectory also
becomes a simple sinusoidal wave, and the stance-leg motion that behaves as zero dynamics is also
able to satisfy the target condition necessary for stealth walking. Third, we extend the method

developed through investigation of the linearized model to the nonlinear model, and numerically
confirm the validity. Finally, we report some basic experimental results of the prototype URW
machine.

1. Introduction

In general, point-footed limit-cycle walkers have one degree of underactuation at ankle or

ground-contact point, and their relative joint angles are chosen as the control output for

generating an efficient walking motion.1 In this approach, the absolute angle of the stance-

leg behaves as hybrid zero dynamics (HZD), and the main problem is how to guarantee or

understand the stability of HZD.

The authors have proposed a different approach to generation of an underactuated walk-

ing motion aiming at adaptation to various ground condition; generation of a careful walking

pattern considering rough terrain.2–4 Unlike limit-cycle walking,1 in this approach the abso-

lute stance-leg angle is chosen as one of the control outputs, and is strictly and preferentially

controlled so that the fore foot can land on the ground stealthily without causing the loss

of kinetic energy.5,6 From the practical point of view, however, it is not easy to precisely

measure the absolute stance-leg angle in real-time, and it is most realistic to directly drive

the relative joint angle to which the motor is attached by utilizing the dedicated positional

controller. As for the desired trajectory, it is manageable to use a sinusoidal wave in which

only the target step period and amplitude need to be adjusted.

Based on the observation, in this paper we apply the control technique for limit-cycle

walkers to a real stealth walking machine shown in Fig. 1 left. This machine consists of

two identical cross-shaped frames and a disk-shaped reaction wheel. The mounting angle

between the two cross-shaped frames can be adjusted for generating an asymmetric walking

gait.7 The reaction wheel is connected to the rimless wheel incorporating a maxon EC motor

and a spiral spring as shown in Fig. 1 center. In stealth walking, the stance leg is accelerated

during the first half of the single-limb support phase and decelerated during the second half.

Although the loss of kinetic energy at impact can be avoided, deceleration during the second

half causes gait inefficiency; there is a trade-off. Therefore, it should be considered to add an

elastic element between the stance leg and reaction wheel. By the effect of the spiral spring,

our machine can reduce the load of the EC motor, and improvement of energy efficiency

can be expected. The EC motor is controlled by utilizing the dedicated digital positional

controller EPOS2 in real-time, and a simple PD control is applied for tracking the desired
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Fig. 1. Prototype experimental machine of eight-legged underactuated rimless wheel with spiral spring and
its mathematical model

sinusoidal trajectory. The proposed control method also makes it possible to generate a

smooth control torque.

2. Underactuated Rimless Wheel and Control Law

2.1. Model assumptions and equation of motion

Fig. 1 right shows the model of the eight-legged URW that consists of two identical cross-

shaped frames and a reaction wheel.8 An elastic element with elastic modulus of k [N·m/rad]

is installed between the cross-shaped frame and reaction wheel so that the elastic force

becomes zero where θ1 = θ2. The reaction wheel is therefore essentially stable at θ2 = θ1.

In this model, m(= m1 + m2) [kg] is the total mass of the URW; l [m] is the stance-leg

length; I [kg·m2] is the inertia moment of the reaction wheel; α [rad] is the relative angle

between two adjacent leg frames and is equal to π/4 [rad]; u [N·m] is the control torque

exerted between the stance leg and reaction wheel.

The θ1 and θ2 are the angular position of the stance leg and reaction wheel with respect

to vertical. Let θ =
[
θ1 θ2

]T
be the generalized coordinate vector. The robot equation of

motion then becomes

Mθ̈ + h = Su, (1)

where terms M , h and S are detailed as

M =

[
ml2 0

0 I

]
, h =

[
−mgl sin θ1 + k (θ1 − θ2)

−k (θ1 − θ2)

]
, S =

[
1

−1

]
. (2)

We assume that the fore foot lands on the ground stealthily without causing the loss of

kinetic energy according to the control law described later, and that the stance-leg exchange

is completed smoothly. The angular velocities therefore do not change at this instant, that

is, θ̇
−

= θ̇
+

holds where the superscripts “−” and “+” denote immediately before and

immediately after stance-leg exchange. The stance leg and reaction wheel are controlled to

rotate clockwise by α [rad] during every single-support phase, and their angular positions

should be reset to θ+ = θ−−
[
α α

]T
. The generated motions of the stance leg and reaction

wheel therefore include state jumps and behave as HZD, but they are not affected by collision

dynamics.

2.2. Control law

In stealth walking, the stance-leg motion must be controlled strictly and preferentially so

that the fore foot can land on the ground stealthily without causing the loss of kinetic
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energy. In this paper, however, we propose a different approach to stealth walking taking

the hardware into account described below.

We choose the control output as y := STθ = θ1− θ2 instead of θ1 because the EC motor

is installed between the leg frame and reaction wheel. The control input for achieving ÿ = v

can be determined as

u =
v + STM−1h

STM−1S
=

ml2I

ml2 + I

(
v − ω2 sin θ1

)
+ ky, (3)

where ω :=
√
g/l [rad/s]. As discussed in Ref. 9, the y can be controlled to the desired

terminal value according to the methods of discrete-time output deadbeat control (DODC)

or continuous-time output deadbeat control (CODC) laws, and a stable limit-cycle gait can

be generated consequently. DODC is a minimum-time or bang-bang control, whereas CODC

is an averaging method of DODC by using a linear function of time. In this paper, however,

we consider the following command signal, v = v(t), for angular acceleration.

v(t) = Am sin

(
2πt

T

)
(4)

We assume that the time parameter t [s] is reset to zero at every instant of stance-leg

exchange. This v(t)(= ÿ) implies that the EC motor can exert a smooth control torque

unlike DODC. According to this v(t), the resultant output trajectory, y, also becomes a

simple sinusoidal wave as described later. This approach, DODC and CODC have in common

that they accelerate in the first half of cycle and decelerate in the second half.

3. Analysis of Linearized Model

3.1. Derivation of approximate analytical solution for target system

parameters

The linearized equation of motion becomes

Mθ̈ +Gθ = Su, (5)

where

G =

[
−mgl + k −k

−k k

]
. (6)

The control input for achieving ÿ = v(t) in the linearized model is then determined as

u =
v(t) + STM−1Gθ

STM−1S
=

ml2I

ml2 + I

(
v(t)− ω2θ1

)
+ ky. (7)

By substituting this control input into Eq. (5) and arranging it, we can obtain the state-space

realization of the controlled linearized equation of motion as

ẋ = Ax+Bv(t), (8)

where x =
[
θT θ̇

T
]T

and

A =

[
02×2 I2

−M−1
(
I2 − SSTM−1

STM−1S

)
G 02×2

]
=


0 0 1 0

0 0 0 1
mgl

ml2+I 0 0 0
mgl

ml2+I 0 0 0

 , (9)

B =

[
02×1

M−1S
STM−1S

]
=


0

0
I

ml2+I

− ml2

ml2+I

 . (10)

331



Following Eq. (7), the approximate state at t [s], x(t), can be analytically derived as

x (t) = eAtx(0) +

∫ t

0

eA(t−τ)Bv(τ)dτ =


θ1(t)

θ2(t)

θ̇1(t)

θ̇2(t)

 , (11)

and the control output at t [s] is then obtained as

y(t) = θ1(t)− θ2(t) = −
2π

(
2πθ̇2(0)−AmT

)
t+AmT 2 sin

(
2πt
T

)
4π2

. (12)

The target boundary condition to be met then becomes

x (T ) =


θ1(T )

θ2(T )

θ̇1(T )

θ̇2(T )

 =


α
2
α
2

0

θ̇2(0)

 . (13)

By solving θ1(T ) =
α
2 , we obtain

Am =
αω̂

(
4π2(ml2 + I) +mglT 2

)
4πIT

coth

(
ω̂T

2

)
, ω̂ :=

√
mgl

ml2 + I
. (14)

By solving θ2(T ) =
α
2 , we obtain

θ̇2(0) =
αω̂

(
4π2(ml2 + I) +mglT 2

)
8π2I

coth

(
ω̂T

2

)
. (15)

By substituting the Am of Eq. (14) and θ̇2(0) of Eq. (15) into the y(t) of Eq. (12), we obtain

y(t) = −AmT 2

4π2
sin

(
2πt

T

)
= − T 2

4π2
v(t). (16)

We can understand that the relative joint angle also becomes a simple sinusoidal wave.

According to the above method, in this case the resultant motions of the stance leg and

reaction wheel satisfy the conditions necessary for stealth walking.

3.2. Numerical simulations

We conduct a numerical simulation of the linearized URW model. The physical, control and

target system parameters are listed in Table 1. The target step period, T , is chosen as a

little large to maintain the vertical ground reaction force positive during motion. The URW

started from the following initial state:

θ(0) =

[
−α

2

−α
2

]
, θ̇(0) =

[
0

θ̇2(0)

]
, (17)

where θ̇2(0) is the target initial values of the linearized model determined by Eq. (15). Fig.

2 shows the simulation results of high-speed stealth walking of the linearized URW. Here,

(a) is the angular positions, (b) the angular velocities, (c) the control input, and (d) the

specific resistance (SR). From (c), we can understand that the control load is monotonically

reduced with respect to the increase of k. The energy efficiency can be evaluated in terms

of SR that is defined as SR = p/mgV [-] where

p :=
1

T

∫ T

0

|ẏu|dt, V :=
2l sin α

2

T
. (18)
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Fig. 2. Simulation results of high-speed stealth walking of linearized model

Table 1. Physical and control parameters for linearized model.

m (= m1 +m2) 2.3 kg

I 0.01 kg·m2

l 0.1 m

T 0.3 s

θ̇2(0) 14.6483 rad/s

Am 306.793 rad/s2

Fig. 2 (d) shows the analysis result of SR versus k in the linearized model, and we can see

that the SR is minimized at k = 3.4 [N·m/rad]. In the following, we discuss the optimal

condition briefly. The input power can be arranged to

ẏu =

(
k − 4π2ml2I

T 2 (ml2 + I)

)
yẏ − ω̂2θ1ẏ. (19)

This is a linear function of k, and it can be expected that the SR is increased or decreased

proportional to k. The SR is changed only with the first term of Eq. (19), and it can become

zero where k = 4π2ml2I
T 2(ml2+I) = 3.05725 [N·m/rad]. This value is a little smaller than the

optimal k, but is useful to estimate it. More detailed analysis is left as a future work.

4. Extension to Nonlinear Model

4.1. Numerical procedures for identification of system parameters

As discussed in Refs. 5,6,10–12, the only problem in extension to the nonlinear model is to 
identify the target initial state exactly through some numerical procedures while referring 
the approximate target initial state of the linearized model. In this paper, we use a bisection 
method again. According to the proposed method, both the stance leg and reaction wheel 
behave as zero dynamics. As discussed in Ref. 6, however, we can identify their target values 
separately.

First, we execute a numerical procedure to identify the target step period, T , to generate 
a space-time symmetric motion of the stance leg following Algorithm 4.1. Second, we execute 
another numerical procedure to identify the target initial angular velocity of the reaction 
wheel, θ̇2(0), so that it is identical to θ̇2(T ) following Algorithm 4.2. Without going into 
detail, in both cases, the error norms reached and converged to the minimum value about 
in the first fifty steps.
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Algorithm 4.1 Calculate T

Set the initial state to Eq. (17).
Set T to 0.3 [s] and ε to a small positive
value.
Set Tmax and Tmin [s] to a little larger and
smaller than the T set.
while ε > 0 do

Run the numerical simulation of the non-
linear equation of motion (1), and save the
θ1(T ) [rad] calculated.
if θ1(T ) + θ1(0) ≥ 0 then

Tmax ← Tmax+Tmin
2

else
Tmin ← Tmax+Tmin

2
end if
ε←

∣∣∣T − Tmax+Tmin
2

∣∣∣
T ← Tmax+Tmin

2
end while
return T

Algorithm 4.2 Calculate θ̇2(0)

Set the initial state as Eq. (17) where the
θ̇2(0) [rad/s] is the resultant initial value ob-
tained through Algorithm 4.1.
Set θ̇2max and θ̇2min [rad/s] to a little larger
and smaller than the θ̇2(0) set.
Set T to the value obtained through Algo-
rithm 4.1 and ε to a small positive value.
while ε > 0 do

Run the numerical simulation of the non-
linear equation of motion (1), and save the
θ2(T ) [rad] calculated.
if θ2(T ) + θ2(0) ≥ 0 then

θ̇2max ← θ̇2max+θ̇2min
2

else

θ̇2min ← θ̇2max+θ̇2min
2

end if

ε←
∣∣∣∣θ̇2(0)− θ̇2max+θ̇2min

2

∣∣∣∣
θ̇2(0)← θ̇2max+θ̇2min

2
end while
return θ̇2(0)

4.2. Numerical simulations

Through the above procedures, the target values of the step period and initial angular

velocity of the reaction wheel were identified as T = 0.297466 [s] and θ̇2(0) = 14.5244

[rad/s].

Fig. 3 shows the simulation results of high-speed stealth walking of the nonlinear URW

model. We can see that the generated walking motion is similar to that of the linearized

model in Fig. 2. The analysis result of the SR versus k in this case is omitted because it

is similar to Fig. 2 (d). The minimum SR was 0.129221 [-] where k = 3.5 [N·m/rad]. From

Fig. 3 (d), we can see that the vertical ground reaction force is maintained positive during

motion. This condition, however, cannot be met if the target step period T is too short. The

lower limit is discussed in the following.

4.3. Derivation of approximate minimum control period

The vertical ground reaction force, Fz [N], is specified as

Fz = m cos θ1

(
g cos θ1 − lθ̇

2

1

)
− (u− ky) sin θ1

l
. (20)

Without going into detail, the Fz is minimized at mid-stance, t = T
2 [s]. This is strongly

supported by Fig. 3(d). The necessary condition then becomes

Fz

(
T

2

)
= mg −mlθ̇1

(
T

2

)2

≥ 0. (21)

This inequality can be arranged and solved for T by using the θ̇1
(
T
2

)
driven by using the

linearized model approximately. The minimum value of T can also be solved accordingly as

follows.

Eq. (21) ⇐⇒ θ̇1

(
T

2

)
=

αω̂

2
coth

(
ω̂T

4

)
≤ ω ⇐⇒ T ≥ 4

ω̂
tanh−1

(
αω̂

2ω

)
=: Tmin (22)

The Tmin for the simulation model was 0.164673 [s], and the values of T used in the above

simulations satisfy the condition of Eq. (22).
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Fig. 3. Simulation results of high-speed stealth walking of nonlinear model

5. Experimental Results

To verify the validity of the results numerically obtained, we conducted experimental veri-

fication using the experimental machine shown in Fig. 1. The main physical parameters of

it were the same as those of the mathematical model, and the elastic coefficient is k = 9.5

[N·m/rad]. Fig. 4 shows the desired time trajectory for (a) the angular position, and (b) for

the angular velocity of the EC motor. As previously described, the desired time trajectories

were designed as sinusoidal waves, and were adjusted several times while referring the sim-

ulation results. To reduce the motor load at start and stop, the initial and final trajectories

were interpolated by a cubic function. The parameters for v were Am = 1.9548 [rad] and

T = 0.373832 [s]. Fig. 5 shows the snapshots of experimental walking where contours were

extracted every second. In the experiment, it was not possible to achieve continuous stealth

walking due to the error of the initial angular position and angular velocity, but about 3 steps

were successfully continued. For confirmation of successful stealth walking, it was planned

to make a judgment from the data of the measured angular position and angular velocity,

but the data was inaccurate due to the influence of electromagnetic noise generated from

the EC motor. We then judged successful stealth walking based on the collision noise and

images of the experimental walking. The basic experiments suggested the possibility that

continuous stealth walking could be achieved by setting the initial state more appropriately.

6. Conclusion and Future Work

In this paper, we proposed a realistic method for achieving stealth walking of the URW,

and investigated the validity through numerical simulations and experiments. Numerical
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Fig. 4. Desired time trajectories for angular position and angular velocity in experimental stealth walking
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Fig. 5. Snapshots of experimental stealth walking

simulations showed that a stealth walking gait can be successfully generated according to

the method; the resultant motions of the stance leg and reaction wheel behaving as zero

dynamics could achieve the necessary condition for stealth walking. It was also clarified that

the effect of an elastic element can significantly improve the energy efficiency by reducing

the load of actuation.

The basic experiments showed that a nearly stealth walking gait can be generated ac-

cording to the proposed method. Redesigning the data acquisition circuit and development

of a catapult for appropriately starting the robot are left as future tasks.
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