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The constant increase in the world population has progressively demanded that humanity

develop new technologies to face challenges such as providing high-quality food to the consumer

market. In this sense, the concept of precision agriculture arises, proposing the development of
agricultural activities such as preparing the land, sowing, planting, treating plants and harvesting

automatically through robotic systems. This study focuses on performing a systematic review of

the state of the art of robotics applications to execute agricultural activities. Through a com-
parative analysis of the existing solutions it was possible to highlight the similarities, differences

and limitations of several agricultural robots. After looking at the needs of agricultural tasks and
the limitations of robots, the challenges that are still unresolved and their possible solutions are

indicated.
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1. Introduction

There are currently about 7.6 billion people on the planet, and by 2050 this number is ex-

pected to increase to 9.8 billion people.1 The growth in the world population brings with it

several types of issues, such as the need to increase food production in increasingly smaller

agricultural environments, since around 68 % of the world population will live in urban envi-

ronments by 20502 and will need twice the current food production capacity.3 The percentage

of arable land has significantly decreased, since in 1991 it represented around 39.47 % of the

land area and in 2013 it reduced to 37.7 %.4 With the proposal to improve people’s living

conditions, the increase in the global urbanization process tends to increase individual’s

financial income, which – consequently – makes people seek a healthier way of life and nu-

trition.5 As a proposal to solve the increasing demand for high quality food, food producers

around the world are looking for cost-saving methods to stay in the competitive agricultural

industry market. Rural producers are automating agricultural activities to maximize their

profits, because about 39 % of the costs of certain North American farms are destined to the

payment of the workforce and due to the lack of qualified employees to work on the farms.6

Thus, the concept of precision agriculture has increasingly gained prominence with the use

of automated or robotic systems for carrying out daily activities in the ground, such as: land

preparation, sowing, planting, pest control and harvesting.7 Therefore, this study presents

a systematic review of the main agricultural activities that have being automated through

robotic systems, aiming to expose not only the current technological challenges, but also to

suggest possible future solutions.
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2. Robotic Applications in Agriculture

Combined with the growth of research in the agricultural field, scientific and technological

advances in the areas of mobile robotics, computer vision and artificial intelligence allows

the development of increasingly accurate activities. Tasks such as harvesting, pruning and

spraying cultivation areas are chosen to be improved precisely because such activities are

performed manually, involving labor costs and over-application of expensive chemicals (in-

creasing environmental impacts). On the other hand, the task of estimating food production

allows the agricultural producer to have greater control over their production, identifying

possible situations such as diseases on the plantation that are impossible to be detected

by naked eye.5 In this sense, the following subsections will address various types of robots

(some shown in the Fig. 1) associated with each agricultural task individually.

(a) Sowing.8 (b) Pruning.9 (c) Weeding.10 (d) Yield estimation.11

Fig. 1. Examples of robotic applications in agriculture.

2.1. Robotic Applications for Land Preparation before Planting

Among various functions, the Cäsar robot can perform the task of fertilizing the soil both

remotely controlled by a human and autonomously.12 To navigate the plantation, it uses

Real Time Kinematic (RTK) technology for the Global Navigation Satellite System (GNSS),

capable of improving location and positioning accuracy to about 3 cm. With a four-wheel

steering system (4WS) to maximize its maneuverability, the Greenbot robot was the first

commercial robot completely used to perform repetitive tasks such as sowing, plowing or

fertilizing 10 hours a day, transporting up to 750 kg and 1500 kg in the front and rear

compartments, respectively.13 It has a bump sensor to detect obstacles ahead and make

emergency stops.

2.2. Robotic Applications for Sowing and Planting

To accelerate the sowing process of agricultural fields, a mobile robot powered by continuous

tracks (to carry heavy loads on non-uniform soils) was developed to transport a reservoir

containing general seeds and to carry out its uniform distribution throughout the planta-

tion.14 Another robot of large wheat precision sowing is the 4WS robot, which was able

to sow with 93 % precision even for different locomotion speeds.15 Unlike Srinivasan et al.

(2016), the four-wheel-drive (4WD) robot was designed to be light weighted (to prevent soil

deterioration) and to perform corn seeding through an individual seed selector, capable of

distributing the quantity of seeds suitable for planting.16

2.3. Robotic Applications for Plant Treatment

After the planting stage, keeping agricultural products healthy until harvest is not always a

simple task, as it is necessary to take care of the plantation so that diseases do not arise and

spread throughout the crops as a whole and, consequently, turn the harvest unfeasible. With

the purpose of detecting multiple diseases (powdery mildew and tomato spotted wilt virus)
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in greenhouses, the authors Schor et al. (2016) developed a robotic system composed of a 6 
degrees-of-freedom (DOF) manipulator on a fixed platform with a Red, Green, Blue (RGB) 
camera and a laser distance sensor (DT35, SICK). The manipulator is used to move the 
RGB camera around the concerned plant and the laser sensor is employed to measure the 
distance from the manipulator to the plant, to avoid collisions. After capturing the images, 
the disease detection process is initiated through Principal Component Analysis (PCA) and 
Coefficient of Variation (CV).17 As a result, the system obtained a 64 % accuracy rate for 
the classification of plants with low level of powdery mildew disease and 90 % for tomato 
spotted wilt virus disease, indicating the possibility of early identification with high precision 
of disease detection.

Automated seeding robotic systems, guided by the GNSS must consider possible sit-

uations of signal loss, such as the technologies of Global Position Systems (GPS) (North 
American), GLONASS (Russian) or GALILEO (European).18,19 In order to keep the health 
of vineyards constant throughout the cultivation, an Unmanned Aerial Vehicle (UAV) with a 
GPS data-based navigation system and an Inertial Measurement Unit (IMU) capable of ob-

taining thermal and multispectral images was used to calculate the indices of wine-growing 
vegetation, based on the Normalized Difference Vegetation Index (NDVI), to monitor the soil 
and efficiently manage the plantation irrigation system,8 according to Fig. 1(a). The map-

ping of crop fields can also be performed by UAV, because unlike the monitoring of fields 
made by satellites and airplanes, UAV have a low flight altitude, capturing high resolution 
images without the interference of clouds. Thus, through an UAV equipped with a high 
resolution color camera, researchers Torres-Sánchez et al. (2014) performed multi-temporal 
mapping of a fraction of vegetation in wheat fields at the beginning of the season, and appli-

cation of herbicide to lawn.20,21 Through various indices (CIVE, ExG, ExGR, Woebbecke 
Index, NGRDI, VEG) they studied the behavior of vegetation before and after sowing. The 
technology proposes to assist planting monitoring and weed identification activities.

An additional way to prevent the proliferation of diseases and/or weeds before harvesting 
is through the use of pesticides/herbicides. Compared to a speed or wide area sprayer, UAV 
can reduce the use of pesticides and maximize the efficiency of cultivation areas.5,22 A quad-

copter, located just a few meters from the plantation, capable of carrying up to 5 liters of 
Urea (organic compound), was used to spray such product over a defined region.23 Through 
human-machine interaction, a robot was developed to remotely spray pesticides (which pose 
risks to human health) on vineyards, using a Human Machine Interface (HMI).24 In order 
to control the spraying within certain areas, the authors Berenstein and Edan (2018) de-

veloped a system for opening a valve connected to a mobile wheeled robot, which moved 
through a vineyard.25 Using an RGB camera and distance sensors, the robot calculates 
the opening diameter of the valve that releases the pesticide, based on the machine vision 
Foliage Detection Algorithm (FDA) and Grape clusters Detection Algorithms (GDA), re-

sulting in a 45 % material reduction. For the types of crops that depend on pollination 
activities – such as kiwi cultivation – researchers have developed a mobile wheeled robot, 
with a system divided into: machine vision (implementing Convolutional Neural Network 
(CNN)), flower tracking (which has a strong dependence on the odometric system), spray 
time control and spray dispenser (composed of 20 nozzles).26 For this task, the robot was 
able to pollinate about 79.5 % of the kiwi flowers at a speed of 3.5 km/h. The task of prun-

ing grapevines was also studied by researchers, so this process could be achieved through a 
robotic system.9 In this case, a mobile platform containing wheels was employed (dragged 
by a cable attached to a tractor, as shown in Fig. 1(b)) that surrounds the vineyard, which 
has a 6-DOF manipulator, Light-Emitting Diode (LED) lighting and three RGB cameras, 
all fixed to the platform. In order to prune the vines, the 6-DOF manipulator contains a 
cutter as the final actuator. In addition to the mobile platform, several computer vision
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techniques, such as foreground/background segmentation, detection of 2D structures, cor-

respondence and incremental 3D reconstruction were applied. The Support Vector Machine

(SVM) learning algorithm was also used to classify the different types of detectable objects,

that is, branches or poles and fixing wires. In order to prune specific branches, the system

implements a collision-free path planner, based on Rapidly Exploring Random Tree (RRT),

RRT-Connect. As a result, the researchers reported that through real application testing,

the system was able to cut the branches of the vines.9

With the increase in the demand for organic products (without the use of herbicides),

producers are looking for new ways to carry out weed control in plantation crops. The

researchers Gai et al. (2020) proposed such control to be done through a robotic system,

capable of detecting weeds near – or even within – broccoli and lettuce plantations. Planta-

tion data were extracted using the Kinect v2 sensor.27 The study focused on the activities of

vegetation pixels segmentation (using the Random Sample Consensus (RANSAC)), plant ex-

traction (2D connected-component method), resource extraction (length, width and height

of leaves, arrangement of ribs and area) and finally the classification of plants (based on

characteristics). Through a remotely controlled vehicle, the real tests presented a high de-

tection rate of broccoli (91.7 %) and lettuce (90.8 %), however the authors did not describe

the stage of weed removal. Unlike Gai et al., the researchers McCool et al. (2018) developed

the AgBot II robot, as shown in Fig. 1(c), with the task of removing weeds from crops using

three mechanical tools: an arrow-shaped hoe, a toothed tool and a cutting tool, all based on

the implementation of the Local Binary Pattern (LBP) and Covariance Feature techniques

in images collected by a color camera.10 To take advantage of the constant exposure to the

sun while carrying out weeding activities, the RIPPA28 and Ladybird29 robots were de-

signed to contain photovoltaic panels in their mechanical structure and, thus, recharge their

battery systems. The BoniRob robot performs both tasks (classification between plantation

and weeds and their subsequent removal, using sprays and a ramming rod) by merging the

images collected through camera and ultrasonic sensors.30

2.4. Robotic Applications for Harvesting

In order to evaluate the various robotic systems for harvesting fruits, Bac et al. (2014)

elaborated several performance indicators, such as harvest success, success in capturing ripe

fruit, damage rate and time of operation. After analyzing about 50 projects, they concluded

that most of the applications involving robots in harvesting activities used: field tested

mobile robots, manipulators with 3-DOF, RGB and/or multi-spectral cameras and adaptive

algorithms (to suit the changes in objects, environment and/or market requirements).31

Committed to the strawberry harvesting, Ge et al. (2019) developed the location of

fruits and perception of the environment by means of a robot equipped with an RGB-Depth

(RGB-D) camera. The researchers focused on the development of three tasks: the detection

of strawberries through deep learning networks (Region-based Convolutional Neural Net-

work (R-CNN)); a trajectory planning algorithm to plan the collision-free action of picking

strawberries based on 2D images and the 3D point cloud; tests performed in a real envi-

ronment. After carrying out several experiments, among all the ripe strawberries identified,

74.1 % were successfully harvested with an F1-score (harmonic mean of accuracy and re-

call) of 0.9.32 Through the Vegebot robot, English researchers developed a lettuce collection

mechanism.33 There are three types of challenges for this kind of task: removal, protection

and identification of lettuce heads. In this case, the researchers developed a closed-loop

control method to monitor the force required to extract the lettuce. Since lettuce is a very

sensitive vegetable, two RGB cameras located above and at 45◦ of the vegetation were used

to identify and prevent damage to the vegetable. R-CNN was also used – due to its high
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detection rate – to allow its later use in systems with low financial cost and processing 
power.33 After identifying the center (head) of the lettuce, a manipulator system with 6-

DOF positions the lettuce device extractor over the vegetable and removes it. The system 
located (with 91 % success rate) and classified (with a 82 % accuracy) vegetables when 
tested with a large amount of tests.33

2.5. Robotic Applications for Yield Estimation

Without the need to harvest the fruits, the robots used to estimate crop yields focus their 
efforts on improving computer vision systems. A test platform called Shrimp equipped with 
six RGB cameras was used as a ground wheeled vehicle to detect and estimate the yield of 
apple orchards.34 Unlike Botterill et al. (2017) – who used a platform to completely cover 
the vineyard – Bargoti and Underwood (2017) performed the monitoring of apples exposed 
to natural lighting conditions, considered a challenging task.34 The Shrimp vehicle has a 
GPS system and an Inertial Navigation System (INS), used to estimate the robot’s position 
and locate each sampled image. As proposed by Bac et al. (2014), Bargoti and Underwood 
(2017) implemented two distinct learning algorithms – Multiscale Multilayer Perceptron 
(MLP) and CNN.34 They also implemented two different techniques for the detection of 
apples, the Watershed (WS) segmentation algorithm and the Circular Hough Transform 
(CHT). The best results were achieved using CNN and WS, reaching an apple detection of 
82.5 %, with an F1-score of 0.791 and a coefficient of determination r2 (the goodness of fit 
for a given model) of 0.826.34

Another work of great relevance was the development of a wheeled mobile robot to 
monitor the cultivation of grapes in the Douro region in Portugal, which presents steep 
slope vineyards.11 Equipped with RGB cameras and infrared (IR) sensors, Light Detection 
And Ranging (LiDAR) and encoders, the 4WD robot – called Agrob V14 – as shown in Fig. 
1(d), was designed to work autonomously even in the event of GNSS signal unavailability, 
since the characteristics found in the Douro vineyards reduce dramatically the availability 
and accuracy of the GNSS service.11 The characteristics of the region’s soil, with a high 
content of stone elements, also impose restrictions on the planning of trajectories (strongly 
dependent on the information provided by odometer and IMU systems). It proposes a new 
approach to the Simultaneous Localization And Mapping (SLAM) technique by inserting 
Radio-Frequency IDentification (RFID) tags located at the beginning and end of each row 
of the vineyard to allow the reduction of the complexity of the 2D Extended Kalman Filter 
(EKF) used, and increase computational efficiency, this process being named VineSLAM. 
The authors conclude that the Agrob V14 robot can overcome ditches, rocks and high 
slopes (30 %), although these characteristics impose difficulties to the robot, which reduces 
the detection of natural characteristics by the Laser Range Finder (LRF).35

3. Discussion of Existing Applications

The progressive approach of the main scientific works existing in the area of precision agri-

culture, analyzing applications of robotics from the preparation of the land before planting, 
sowing and planting, and the treatment of plants until the harvest stage, was elaborated so 
that it was possible to identify the advances, trends and limitations existing to date, and to 
establish possible unresolved issues.

3.1. Comparison between Existing or On-going Solutions

In order to summarize all the applications described in the present study, and to visualize 
their similarities and differences, Table 1 lists the task performed by each robot previously 
described.
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Table 1. Comparison between existing or on-going solutions.

Application Robot
Locomotion

System

Final

Application
Used Sensors

Computer

Vision

Algorithms

Land

Preparation

Cäsar12 4WD Orchard or Vineyard RTK GNSS Not included

Greenbot13 4WS
Horticulture, Fruit and

Arable Farming

RTK/GPS,

Bump Sensor
Not included

Sowing

Land Robot14 Caterpillar Treads
Seeds in

General
Ultrasonic Sensor Not included

Lumai-515 4WS Wheat Speed, Pressure and IR Not included

Land Robot16 4WD Corn Ultrasonic Sensor Not included

Treatment

Fixed Robot17 Manipulator Bell Pepper RGB Camera and Laser PCA and CV

Octocopter8 UAV Grape Multispectral Camera NDVI

Quadcopter20 UAV General Farms RGB Camera Otsu Method

AgriRobot and SAVSAR24 4WD Grape
RGB Camera

and LiDAR
FDA and GDA

Spray Robot25 4WD Grape
RGB Camera

and Laser
FDA and GDA

Pollinator Robot26 4WD Kiwi RGB Camera and Odometry CNN

Land Robot27 4WD Weed Kinect v2 RANSAC

AgBot II10 4WS Weed RGB Camera LBP

BoniRob30 4WS Weed
RGB Camera and

Ultrasonic Sensor
CNN

RIPPA28 and Ladybird29 4WS Weed

Hyperspectral and Thermal

Cameras, RTK/GPS/INS

and LiDAR

ExG-ExR

Harvest
Noronn AS32 4WS Strawberry RGB-D Camera R-CNN

Vegebot33 4WD Lettuce RGB Camera R-CNN

Yield

Estimation

Shrimp34 Mobile Platform Apple RGB Camera MLP and CNN

Agrob V1411,35 4WD Grape RGB Camera and LiDAR SVM

By analyzing Table 1, it is possible to observe that most robots present a 4WD system.

This is due to its ease of construction, control and the vast majority of the plantation soils

that are not as rough and/or steep. It is noted that unlike the sowing robots, all robots asso-

ciated with the treatment of the plantation have some computer vision algorithm, showing

the different levels of difficulty between each agricultural activity. Due to the difficulty of

developing an accurate and reliable system that replaces manual labor, most of the reviewed

studies sought to build robots with a low-cost computer vision system, that is, using con-

ventional RGB cameras. However, the studies still remain in the research area, with no

commercial use on a large scale, except the Cäsar and Greenbot robots. It is also observed

that in most applications that have a camera vision system, the CNN method is used as

a way of classifying objects and/or fruits, due to the intense technological advances in the

area of computing, increasing the performance of computer systems and allowing them to

perform mathematical calculations more quickly. Unlike an urban environment, the agri-

cultural environment requires, in addition to the aforementioned tasks, a greater robust

electronics/mechanics of the robots, allowing them to continue operating normally even un-

der variations in temperature and humidity, dust incidence, vibration (uneven soil) and dry

or wet soil (after planting irrigation). Even with the various existing robotic systems, it

is possible to observe its limitations and stipulate new directions for the development and

improvement of new robots applied to the concept of precision agriculture.

3.2. Unsolved issues

In general, it is possible to group open challenges and/or issues into three categories related

to the robot, navigation systems and computer vision and system intelligence.

As noted in Table 1, most of the employed robots use a 4WD system. However, robotic

systems with wheels are strongly affected by terrains containing stone elements and/or

cavities, because for their locomotion the wheels need to be in constant contact with the

soil. For this reason, the constant locomotion of such robots throughout the plantation
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results in a high rate of soil deterioration.16 In this sense, the improvement of the energy

consumption of UAV and, therefore, its flight time,22 enabled its greater efficiency in carrying

out agricultural tasks without contact with the soil. Another research possibility is the use

of robots with other forms of locomotion,31 namely legged robots, as they are able to move

in irregular and unstable terrain.36,37 In addition, they do not need constant contact with

the ground for movement, and the damage caused to the plantation soil is much less than

that of wheeled robots. Since only Cäsar and Greenbot robots are commercially available,

another proposal would be the development of a new research based on legged robots already

available for use, that is, off-the-shelf. As examples of off-the-shelf robots, two stand out:

ANYmal38 and SPOT.39 Both these robots are quadrupedal and have their own solutions for

navigation systems, trajectory planning, computer vision and have an intuitive programming

interface for the development of new applications by researchers.

Regarding the development of robots with navigation systems based on GNSS signals in

agricultural plantations whose height of vegetation or the conditions of the local environment

impair the reception of GNSS signals, such as wine-growing activities in the Douro region

in Portugal, the improvement of SLAM techniques11 may contribute to a more efficient

automated locomotion, estimating with greater precision the location and position of the

robot in relation to the environment surrounding it.

Finally, as we are going through the process of the 4th industrial revolution, applications

in cyber-physical systems have been in great demand by large companies in the sector. In

this sense, the integration between the various applications of agricultural robots and the

Internet of Things (IoT) devices/sensors,5 can together maximize the control and monitoring

of crops, sharing machine to machine (M2M) information, and displaying them in a simple

form to the rural producer.

4. Conclusions

Through a systematic review of various applications of robots in the agricultural field, was

carried out a gradual approach to the theme of robots performing tasks of preparing the land,

sowing, planting, plant treatment and harvesting. Through a discussion of why such systems

or techniques are more appropriate to perform certain tasks, for precision agriculture closer

to real field conditions, improvements in locomotion, navigation and vision systems in rough

terrains are required, in addition to greater integration between the various robotic systems

and IoT technologies. Therefore, the present study sought to contribute to the state of the

art of agricultural robot applications, transforming large farms into smart farms.
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