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Multi-robot systems are preferred in complex missions such as, unknown and unstructured area
exploration, due to the scalability, robustness, efficiency and cost considerations. Accurate position

estimation is a key problem that needs to be addressed for multi-robot systems in unknown indoor

and outdoor environments. In this work, we propose a collaborative localization scheme for multi-
robot systems. In this scheme, the robots operate without a static reference anchor infrastructure.

Each robot localizes itself using individual sensors (such as, IMU and wheel odometry). Next,

the robots share their own positions through communication and relative distances between them
are measured using time-of-flight sensors (such as, ultra-wide band radio). Finally, we incorporate

dynamic adaptive noise covariance in sensor fusion for further improving localization accuracy.

The overall scheme is tested in simulation and we achieve high level (cm level) of localization
accuracy. Detailed simulation results are presented to further demonstrate the scalability of the

proposed scheme.

1. Introduction

Multi-robot systems have been receiving increased attention due to their distinct advantages

compared to the single robot systems. Robustness to individual robot failure, capability to

scale with a mission, time taken to complete a complex mission are some key advantages

exhibited by multi-robot systems compared to single robot systems. In a complex mission

such as search and rescue (especially, in an unknown/unstructured environment), efficient

operation of such mobile-robot systems is a critical challenge. For instance, the operations

of robots in cluttered indoor environments to explore multi-storied buildings and the op-

erations in an unknown/unstructured outdoor environment with massive area exploration,

require advanced sensors and compute capabilities. A sample exploration mission is shown

in Fig.1a . Further, these robots must be capable of navigating safely and efficiently through

unknown terrains and harsh environments while simultaneously carrying out their tasks to-

wards accomplishment of a common mission. Accurate position estimation is a fundamental

parameter for enabling efficient autonomous navigation of a mobile robot.

In an indoor environment (where GPS is inaccurate and unreliable), wheel odometry

and IMU are traditionally used for localization. Wheel odometry accumulates errors over-

time due to wheel slippage and encoder miscount. IMU has drift problem over time. Thus,

it is very difficult to accurately localize the robot using wheel odometry and IMU in an

indoor environment1. There are other existing approaches in literature, that can be used

for precision position estimation, such as, time difference of arrival (TDOA), time of ar-

rival (TOA), received signal strength (RSS), angle of arrival (AOA), and a combination of

these techniques2–4. However, these techniques demand pre-installation of static anchor 19

infrastructure which are feasible only in known/well-structured environments and are not

practical and hard to establish in unknown/unstructured environments.

For multi-robot systems, a technique called Collaborative Localization (CL) has been

demonstrated for estimating the position of individual robots in a multi-robot setup pro-

viding significant improvements in the performance5. In CL, robots detect each other and
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communicate their estimates to correlate the estimates of their individual poses.

Traditionally, most of the CL approaches are based on range and bearing measurements.

Existing approaches employ filter based solutions or geometry/model based solutions. The

common filters used are extended Kalman filter (EKF)6,7, particle filter8 and unscented

Kalman filter (UKF)9. Poor EKF initialization typically causes instability and suffers from

bias problems associated with the measurement linearization.

Further, many CL approaches employ vision and acoustic based relative measure-

ments10,11. In12, the concept of ”mobile landmark” is introduced, where, the exploration

is carried out by using the robots themselves as landmarks. In13, authors developed mo-

bile robots which are equipped with required sensors to measure the range to landmarks.

These robots then simultaneously localize themselves and also expand the range-only map

by using odometry to increase the likelihood of obtaining a rigid graph. In14, EKF-based

fully decentralized CL has been introduced based on few static landmarks and limited com-

munication between any two robots to obtain a relative measurement. In15, distributed

multi-robot localization is carried out based on acoustic pulses sent and received by the

robots. This work applies concepts from Euclidean distance geometry to label each robot’s

measurements, constructing a set of relative distances and then a set of relative positions.

Vision only solutions are extremely complex and generally demand higher computational

power in order to extract the depth information, while acoustic only solutions require an

array of acoustic sensors to establish a reasonably accurate bearing estimate.

To this end, we propose a novel approach where robots exploit the multi-robot system

properties and communication for localization. In the proposed method, individual robot

location information is estimated using wheel odometry, IMU and robot motion model with

EKF. Next, the robots form a dynamic network, measure distances between each other

through ranging and share their positions and velocities for accurate localization. Further,

dynamic noise covariance concept 20 has been incorporated in EKF along with corresponding

robot motion model for accurate localization without using any static anchors/landmarks.

The key contributions of this paper are outlined below:

(1) Exploiting the availability and properties of multi-robot system to localize individual

robots

(2) Decoupling the dependency on static anchor system for robot localization

(3) Error modeling and feedback using dynamic error covariance for accurate localization

The remainder of the paper is organized as below. The proposed methodology for collab-

orative localization is described in Section 2. Experimental setup and results are discussed

in Section 3. Conclusions are presented in Section 4.

2. Methodology

2.1. Preliminaries

In this work, each robot (differential drive) is equipped with various sensors such as, IMU,

UWB transceiver and shaft encoder. The attitude and heading reference system (AHRS)

algorithm is employed on IMU data using Kalman filter (KF) to measure the robot orien-

tation16. A UWB transceiver is mounted on each robot for ranging (d) with others robots

at anytime to measure the relative distance. The use of UWB transceiver is doubled as

the communication radio for exchanging current pose (x, y, θ), velocity(vx, vy) and control

input (ut). A shaft encoder is attached on the robot wheel to assist in robot velocity esti-

mation. A flow diagram of the proposed approach for multi-robot collaborative localization

is presented in Fig. 1b.

We use the differential drive robot kinematics principle to estimate robot motion 18 in
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(a) A sample multi-robot system in
an area coverage mission

(b) Flow diagram of the proposed approach

Fig. 1. Proposed collaborative localization approach for a sample multi-robot system

Fig. 2. Relative distance measurement and collaborative localization

EKF along with encoder data for robot wheel odometry estimation. The pose estimation

model was developed by integrating kinematic model of robot in the prediction step of EKF

technique, where the control input ut for individual robot is represented as: ut =

(
vt
ωt

)
. The

estimated state µ̄t is represented as: µ̄t =



x

y

θ

vx
vy
ω


.

2.2. Problem Formulation

The main goal of the proposed scheme is to estimate the pose of each robot in a multi-robot

system setting. In Fig. 2, the relative distance measurement for collaborative localization

is depicted. Let us consider a team of N robots (Ri where i→ 1 to N). Let Pi be the pose

of each robot (Ri) in a fixed reference frame. This is depicted in Fig. 3. For explanation

purpose, in this paper, we consider the problem of localizing N robots navigating on a

plane. However, the same approach can be employed for other scenarios as well. Under this
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Fig. 3. Robot position initialization with a fixed reference frame

Fig. 4. Position estimation uncertainty for each moving robot

assumption, a robot pose is a triplet Pi= (xi, yi, θi) with Cartesian coordinates (xi, yi) and

orientation θi. The number of robots in a team N can be changed dynamically depending

on the communication availability and does not need to be known to the robots beforehand.

For relative distance measurement, the minimum number of robots required is 3 (N > 3).

Each robot is provided with an estimate of its own pose Pi and current velocity (vix, viy).

At any given time, the relative distances between robots Ri and Rj are (dij). For instance,

the relative distance matrix of robot (R1) to other robots (Rj) is defined as d1,j =


d12
.

.

d1N−1

.

2.3. Collaborative Localization

The position uncertainty for each robot will increase over time as shown in Fig. 4. To reduce

this position uncertainty, the collaborative localization scheme is proposed. In this scheme,

we tightly couple the measured relative distances di,j along with robot’s own velocity (vx, vy)

and orientation (θ) in EKF measurement vector (zt). The measurement vector for (R1) is
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zt =



d12
.

.

d1N
θAHRS

vodomx

vodomy

ωIMU


; Qt=



σdij
0 0 0 0 0 0

0 . 0 0 0 0 0

0 0 σdNN
0 0 0 0

0 0 0 σAHRS 0 0 0

0 0 0 0 σvx
0 0

0 0 0 0 0 σvy 0

0 0 0 0 0 0 σω


where (Qt) is the measurement noise matrix and σ is the covariance matrix.

Note that, the availability of relative distance di,j is limited by the communication speed.

However, robot’s own velocity (vx, vy) and orientation (θ) measurements are available in

much finer time resolution (high frame-rate) as these are measured using on-board sensors.

This is depicted in Fig 5a.

(a) Time difference between consecutive
measurements

(b) Robot position estimation model based
on current control input

Fig. 5. Robot pose estimation details based on control input

Difference in time and difference in distance between the availability of two consecutive

relative distance measurements (di,j) are denoted by, (∆t) and (∆d), respectively (as shown

in Fig 5a). The measurements (self) (vx, vy and θ) on each robot are obtained every δt time

instant. During each δt, other robot’s (Rj) position (δd) is calculated based on corresponding

velocity and control input obtained at time t0 using the robot motion model as shown in

Fig. 5b. Also, the relative distance error covariance (σdij ) is dynamically updated in the

measurement noise matrix (Qt) at each δt. The relative distance error covariance (σdij
) is

computed as described in Algorithm 2.1 (Q Update) based on the concept in 20.

Algorithm 2.1 Q Update (µt−1, ut, d1,j)

for j = 2 to N

µ̄Rj
= g(ut

j , µj
t−1)

¯d1,j = sqrt(µ̄R1 , µ̄Rj )

δd = d1,j − d̄
σd1,j

= σd1,j
+ cov(δd)

end for

Update Q

3. Results & Discussion

The performance of the proposed scheme is tested using computer based simulations with

ROS and mvsim environment21. We used Intel CoreTM i7 processor with 250GB storage and

8GB RAM. To validate the proposed scheme, two different scenarios are considered. Below

is a short description of the same:
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Fig. 6. A snapshot of simulation environment

• Case 1: Localization accuracy with minimum number of robots with varying speed and

communication frequency.

• Case 2: Localization accuracy with higher number of robots considering scalability as-

pects.

In the simulation setup, the robots with differential drive kinematics are considered.

Each robot is equipped with sensors such as, IMU and wheel odometry. Each robot provides

a ground truth for localization. We incorporated ultra-wide band based ranging techniques

for relative distance calculation with the measurement error margin of 50 cm. Further, we

incorporate the wheel odometry error margin of 10 cm. Each robot explores a square area

of 40 m x 40 m.

Case 1: In this experiment, we consider a team of four robots moving in rectangular

paths as depicted in Fig. 6. Each robot receives information about the other robots every

1 second interval. We measure the localization accuracy by varying the robot speeds from

0.5 m/s to 3 m/s. Next, same experiment is carried out now with increased communication

frequency (2 fps). The results obtained are shown in Fig. 7. In Fig. 7, the loop closure for

robot R1 is demonstrated. The localization accuracy is compared with the ground truth.

With the proposed approach, it is observed that the localization accuracy closely follows

the ground truth.

In Fig.8a, the impact of varying robot speed on the localization accuracy (for a fixed com-

munication speed) is presented. It is observed that, with increase in robot speed, the localiza-

tion accuracy degrades. Finally, same experiment is repeated for increased communication

speed. It is observed that, increased communication speed improves the overall localization

accuracy. In TABLE 1, the minimum and maximum position errors for comms fps = 1

and comms fps = 2 are tabulated.

Case 2: In this experiment, we consider the scalability of the proposed scheme. To vali-

date this, we tested the scheme with robot team size ranging from 4 to 50. The experimental

setup for scalability analysis is as shown in Fig 8b. This figure also shows the connectivity

between the robots in a team.
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Fig. 7. Localization loop closure for R1 where green dots represent the ground truth and blue dots represent
the results with the proposed scheme

Table 1. Minimum and maximum position errors for comms

fps = 1 and comms fps = 2

Robot Velocity (m/s)
Min Error (m) Max Error (m)

fps=1 fps=2 fps=1 fps=2

0.5 0.018 0.007 0.772 0.944

1 0.134 0.011 0.947 1.204

1.5 0.264 0.018 1.703 1.681

2 0.348 0.137 1.574 2.489

2.5 0.355 0.395 2.276 2.283

3 0.513 0.073 2.362 2.796

(a) Localization accuracy plot for varying

robot speed

(b) The plot shows the connec-

tivity of robot R1 with the other
robots

Fig. 8. Simulation snapshot for scalability demonstration and localization accuracy

4. Conclusion

Accurate localization is a critical capability for efficient operation of multi-robot system.

In this paper, a novel scheme for collaborative localization is presented which incorporates

fusion of individual position information, relative distance between robots and dynamic

adaptive noise covariance in sensor fusion. Simulations performed using ROS and mvsim

demonstrate the high accuracy of the proposed scheme. It is observed that the localization

accuracy is limited by the number of communication fps between different robots. With

the increase in robot velocity, the communication fps should be increased to reduce the

localization error. Finally, the increase in the number of robots from 4 to 50 resulted in

similar localization accuracy demonstrating the scalability of the proposed approach.
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