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The movement of the platform of the underwater mobile robot with an excessive number of propulsion 
devices, clinging to the reservoir’s bottom, is considered. The task of determining the laws of the transition 
process, assessing its stability and quality indicators of control when establishing the specified relations 
between the efforts in the cables is studied. 

1.    Introduction 

In the study of the mobile underwater robot motion which moves along the reservoir’s bottom, 
one of the urgent tasks is to study the translational motion of such robot with walking movers 
[1, 2, 3], in particular, the movement of an underwater platform-pontoon using anchor-cable 
propulsion devices. The principle of moving the underwater platform-pontoon with anchor-
cable propulsion devices [4, 5] is presented in Figure 1. 

A feature of such robotic systems is an excess number of propulsion devices using for 
ensuring the required robot platform moving. This is explained by the need for reliable 
interaction of anchors with both hard-to-predict bottom topography and its physical and 
mechanical properties. 

For the unambiguous implementation of the absolutely solid body motion at least six 
control effects are necessary, which in the considered task of the robotic platform movement 
corresponds to six anchor-cable propulsion devices interacting with the ground. In the absence 
of guaranteed interaction of at least one anchor with the ground, the movement of the robot 
becomes unpredictable. This leads the necessity to use an excessive number of propulsion 
devices. As a result, the number of control effects begins to exceed the number of independent 
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generalized coordinates describing the mechanical system under consideration. In this case the 
dynamic uncertainty arises. 
 

 
Figure 1. Principle of mobile robot operation with anchor-cable propulsion devices:  

1 – anchor; 2 – cables; 3 – controlled flywheels; 4 – anchor transfer trajectory. 

 
The task of distributing the dynamic load between several actuators according to one or 

another criterion is quite well known [6]. The simplest example is the automobile differential 
operation [7]. Cable robot control systems with multiple dives are also known [8]. The load 
distribution between several actuators is also implemented in control systems of an 
interconnected electric drive [9, 10]. 

2.    Formulation of the problem 

In [11] the equations of the load motion during the action of two control effects and solutions 
were obtained. That allows one to determine these effects (voltages supplied to the electric 
drives) for realizing the required force ratio in the propulsion device cables χ = T2 / T1 = const. 

However, during the movement of the platform when the anchors are being rearranged, 
there is the necessity to change the ratio χ of forces in the propulsion device cables. Therefore, 
the force ratio χj = Tj / T1 is time-dependent χj = χj(t). Here Tj is the force in the j-th cable; T1 is 
the force in the conditionally “basic” first cable. At those times when the first mover is being in 
the transference phase, any other should be taken as the “base” one. And in general, for mobile 
robots whose movers discretely interact with the supporting surface, the specified ratio χj(t) is 
piecewise continuous. 

Therefore, the problem of determining the laws of the transition process and the problem 
of assessing its stability are arising. Also, the problem of determining indicators of control 
quality when establishing the given relations χj between the efforts in the cables Tj and Tk is 
arising. 

In addition, using the DC-motors it is also possible to use stepper motors as drives. The 
difference is that the DC-motor is being controlled by changing the voltage supplied to the 
armature, and the stepper motor is being controlled by changing the switching frequency of its 
windings. In the case of using the DC-motors the controlled value is the motor shaft torque 
during the constant angular rotor’s speed. In the case of using the stepper motor, the controlled 
value is the output shaft rotation angle. For more precise control of the moving load, the feature 
of stepper motors is preferable. 
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Therefore, the task is to provide a required stable motion of the pontoon robot with certain 
defined relations between the forces χj developed by the drives that change discretely over time. 
The main problem is to reduce the transition time Δt, which affects the speed of the underwater 
platform-pontoon, as well as the smoothness of its movement. The task of the control system, 
in this case, is reduced to the search for control laws and propulsion devices parameters that will 
ensure the stability of the robot in general and the required qualitative and quantitative indicators 
of transients. In particular, the task of the control system is to provide the required duration Δt 
sufficient to achieve the required platform’s movement quality indicators as a whole. 

3.    Solution method 

The method for solving this problem is based on the use of differential equations of the robot 
pontoon translational motion (Fig. 1):  

 
2N

j j
j 1

Mx Q(x) T (x)A (x), j 1, 2,...2N


     , (1) 

where N is the number of movers; M is the mass of the robot; Q( x ) - resistance to movement, 
depending on the robot pontoon’s speed; Tj(x) is the tension force of the j-th cable; Aj(x) are 
known laws that depend on the design features of the propulsion drives. This design features 
link the forces in the j-th cable and the traction force developed by the j-th drive. In the simplest 
case, this is the cosine of the angle between the tensile force Tj and the axis OX (horizontal axis). 

The first peculiarity of equation (1) is that even when moving is being with a constant speed 
the values Aj(x), Tj(x) can depend on the robot pontoon’s movement x. The second peculiarity 
of equation (1) is that the forces in the tensile cables can be of only one sign. 

However, when the programmed motion is set, it is impossible to determine the forces Tj 

from equation (1), since in this case one equation (1) contains 2N unknown forces. To obtain an 
unambiguous solution, equation (1) should be supplemented by auxiliary (2N-1) equations that 
relate unknown forces in the cables Tj to each other. 

Such equations can take the form: 

 kj kj kT (x)B (x) P (x), k 1,2,...2N   (2) 

where Bkj(x), Pk(x) area rectangular matrix and a column matrix respectively which in the 
general case must be determined from the extremum condition of the specified motion quality 
criterion [6, 11]; k is the number of auxiliary equations. In the simplest case [11], for N = 1, 
k = 1, P1 = 0; B11 = - η. 

Equations (1) and (2) should be supplemented by equations relating the rotation angles of 
all propulsion devices ψj with the robot pontoon’s motion x: 

 ( ), 1, 2,...2x j N j j   (3)
 Then the equations of the j-th DC-motor rotor rotational motion should be written: 

 j j j j j j j j p j p jJ k U T R z , z (x), j 1, 2,...2N            (4) 

when zp is the DC-motor – flywheel gear ratio; Jj – is the reduced moment of inertia  
Equations (1) - (4) describe the steady-state process after the transferring of the next anchor 

to a new position and are true until the start of the transferring or installation of the next anchor 
to the bottom. These 8N equations when the programmed motion x=V(t)  is defined contain 8N 

unknown variables: ψj, φj, Tj, Uj. 
This process requires research on sustainability. For this, equations are compiled in 

variations of the studied process of movement, analyzed before the start of the transferring or 
installation of the next anchor of propulsion device on the bottom. 
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If we take into account in (4) all the dependences φj from (3), then the equation in variations 
when programmed motion is formed as: 

 0x v  (5) 

and it’s corresponding: 

 j j (t)   (6) 

will look like: 
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A linearized system of equations between the beginning or completion of the transfer phase of 
the next anchor, characterized by the coordinate x0, to the beginning or completion of the same 
stage of the next anchor, characterized by the coordinate xf, can be represented in the form of 
(2N + 1) linear differential equations in variations in the form: 
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where for n = 1: 
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and for n> 1: 

 

f

0

f

0

f

0

x

n
n n

f 0 x

x 2
n n

n n 02
f 0 x

x 3 2
2n n

n n 03 2
f 0 x

j
nj

p

1
a J dx;

x x x

1
b 2J v dx;

x x xx

1
c J v dx;

x x x x

R
e

z




 

  
    

  
     











 


 


 (10) 

In expression (9) ξ is the coefficient of viscous resistance to the movement of the robot pontoon 
in the liquid; Rj is the radius of the j-th flywheel. 

Thus, the (2N + 1) equations in variations contain (2N + 1) variables and, j = 1, 2 ... 2N. 
The characteristic equation corresponding to differential equation (7) has the form: 
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In order for the solution of differential equations to be stable, it is necessary that the real parts 
of all the roots of the characteristic equations be negative (the roots of the characteristic equation 
are located on the left side of the complex plane): 

 Re( ) 0  (12) 

4.    The model task of studying the stability of the solid body translational motion 
when using two drives 

The problem of a rectilinear solid body motion with a constant speed, effecting by forces in the 
cables developed by two engines was considered in [11] and simulated the movement of a robot 
pontoon with two anchor-cable propulsion devices. In those article the dependences of the forces 
in cablesT1(t), T2 (t) when ratio T2 / T1is defined are obtained. However, the stability of the 
obtained solution was not analyzed. The design scheme of the simulated motion is shown in 
Figure 2. 

 

 
Figure 2. The settlement scheme providing studies of the motion stability. 

 
To study the stability of the differential equations solution (7), it is necessary that the real parts 
of all the roots of the characteristic equation (11) be negative: 

The characteristic equation for the case R1 = R2 and the use of identical DC-motors has the 
form: 

 2
2 3 2 3 2 3(a a ) (b b ) (c c ) 0        (13) 

In accordance with the Routh-Hurwitz criterion [12] for stability it is required that the 
inequalities are being true:  

 2 3

2 3

B b b 0

C c c 0

  
  

 (14) 
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For a model problem with given parameters (solid body’s mass M = 0.5 kg; flywheel mass and 
it’s radii m = 0.24 kg, R = 0.015 m; DC-motor constant μ = 0.014; geometric dimensions h2 = 
0.3 m and L1 = L2 = 0.19 m) and variable variables (0 < h1 < h2, 0 < V < V0 (V0 = 0,08 m/s))in 
accordance with (10), obtained A = a2- a3< 0, B = b2- b3< 0. 

Thus, the stability regions depend on the sign of coefficient C. The graph (Fig. 3) shows 
the dependence C = C(h1) for various values of speed v. Sustainable solutions correspond to 
zones in which C< 0.  
 

 
Figure 3.The dependence of the coefficient C on the ratio parameters h1/h2for various values of speed v: 

1 – v = 0.3v0; 2 – v = 0.5v0; 3 – v = 0.7v0; 4 – v = 0.9v0 

 

5.    Results 

1. An analysis of the dynamics of mobile robots motion with anchor-cable propulsion devices 
shows that when designing such robots and choosing modes of motion it is necessary to study 
the stability of motion. The need for such researching is also due to the requirement of 
minimizing the use of information-measuring systems due to the peculiarities of underwater 
movement. 
2. The geometric parameters of the propulsion devices location, the mass-geometric and the 
energy characteristics of the drives can affect to the stability of movement. 
3. For each type of such robots research should be conducted and areas of permissible 
parameters that ensure the stability of a particular robot movement should be determined. 
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